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Abstract

Research of social neuroscience establishes that regions in the brain’s default-mode network (DN) and semantic network (SN) are
engaged by socio-cognitive tasks. Research of the human connectome shows that DN and SN regions are both situated at the
transmodal end of a cortical gradient but differ in their loci along this gradient. Here we integrated these 2 bodies of research, used
the psychological continuity of self versus other as a “test-case,” and used functional magnetic resonance imaging to investigate
whether these 2 networks would encode social concepts differently. We found a robust dissociation between the DN and SN—
while both networks contained sufficient information for decoding broad-stroke distinction of social categories, the DN carried more
generalizable information for cross-classifying across social distance and emotive valence than did the SN. We also found that the
overarching distinction of self versus other was a principal divider of the representational space while social distance was an auxiliary
factor (subdivision, nested within the principal dimension), and this representational landscape was more manifested in the DN than
in the SN. Taken together, our findings demonstrate how insights from connectome research can benefit social neuroscience and
have implications for clarifying the 2 networks’ differential contributions to social cognition.
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Introduction
Decades of research suggests that humans deduce other
individuals’ mental states by simulating how oneself
would think and feel in similar situations (e.g. Steinbeis
2016). This ability is rooted in the awareness that self and
others are distinct yet relatable social beings. The rudi-
mentary sense of “self vs. other” emerges during infancy,
while self-concept (a sophisticated understanding of
ourselves in relation to others under social contexts)
evolves over lifespan. Neuroimaging evidence (for review,
see Yeshurun et al. 2021) has established that the brain’s
default-mode network (DN) is robustly engaged by
various self-referential processes. This leads to the view
that the DN is the key neural substrate that underpins
“core self”/“ego” (Carhart-Harris and Friston 2010). Rather
than a homogenous structure, converging results from
seed-based connectivity, data-driven parcellation, and
task-induced activation have further indicated that the
DN comprises functionally distinct and anatomically
separable subnetworks (e.g. Braga and Buckner 2017;
Braga et al. 2019; Chiou et al. 2020). The division
within the DN into subnetworks begs an important
question—whether and how each subnetwork

differentially contributes to the representation of self. In
the present study, we investigated this issue by testing
how the psychological continuity from “selfness” to
“otherness” is encoded in 2 major subnetworks of the DN
using multivoxel pattern analysis (MVPA). Our finding
unraveled a robust disparity—the neural coding of one
subnetwork reliably contained more information about
the “self-to-other” continuity than the other subnetwork.
Below we first discuss the neural correlates of self-
referential processes and the limitation of univariate
approach. Next, we discuss evidence for a bipartite
fractionation within the DN. We specifically focus on
how such a fractionation constrains our scope of scrutiny
for neural substrates, and how we can exploit MVPA to
investigate the neural coding for “self vs. other” within
this bipartite structure.

Self-concept is a collection of beliefs about one-
self, embodying the contents of contemplation about
“Who am I?” (Oyserman et al. 2012). It is inextricably
intertwined with many critical issues in cognitive
and social psychology, including perception of the
aesthetics and attractiveness of one’s own body (self-
image), the capability for reflecting on one’s dispositions
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(self-knowledge), one’s recollection of life events (auto-
biographical memory), etc. Previous research has shown
that self-concept depends, in a fundamental way, upon
one’s capacity to represent self as a psychologically
coherent entity persisting through time, whose past self is
construed as an entity closely related to yet partially sep-
arable from the present self (Klein et al. 2002). In addition
to representing present self as a continuation of past self ,
research has shown that self-concept is impacted by the
presence of other people in a social environment. Espe-
cially, during childhood and adolescence, self-concept is
formulated through interaction with significant others,
which spawned numerous investigations of familial and
peer influences on personality and self-esteem (e.g.
Deković and Meeus 1997; Verschueren et al. 2012). The
significance of self-related processing is not only seen
in the field of social psychology but also in cognitive
neuroscience. Researchers have long understood that
self-related processing is one of the major neurocognitive
dimensions that characterize the functionality of the
cortical midline structures, particularly the ventromedial
prefrontal cortex (vmPFC; for review, see Lieberman
et al. 2019). For example, compared to information
regarding another individual, processing information
with reference to self amplifies vmPFC activity. This has
been robustly observed when one evaluates descriptions
with respect to self (Kelley et al. 2002), recalls personal
experiences (Spreng and Grady 2010), or even recognizes
one’s own name/address that is ostensibly unrelated
to the task at hand (Moran et al. 2006). In addition,
patients with vmPFC lesion fail to show self-referential
memory advantage (superior mnemonic performance for
information related to self that healthy people reliably
show), despite those patients having otherwise intact
memory for nonself information (Philippi et al. 2012).
Research also indicates that the vmPFC is sensitive to
social distance with regard to self, with friends eliciting
greater vmPFC activity than strangers, presumably due
to one’s construal of a “friend” being inextricably linked
to oneself (Krienen et al. 2010). In a similar vein, vmPFC
activity was found to reflect whether someone’s political
opinion is in agreement with oneself, with encountering
someone holding concordant views eliciting greater
vmPFC activity than someone holding opposite views
(Mitchell et al. 2006). Together, multiple threads of
evidence consistently suggest that the vmPFC is a key
neural structure underlying self-related processing and
is involved in processing other individuals when they are
deemed similar/related to self.

The univariate approach is useful for identifying the
loci of maximally responding clusters/regions for a
certain cognitive process, giving a bird’s eye view about
where the “hotspot” is. In the case of self-related pro-
cessing, the “subtraction” paradigm is often used—the
univariate response of each voxel (or averaged response
within a region of interest) elicited by self-related
processing is compared with the response driven by
evaluating, imagining, or reminiscing about someone
else. While this approach is useful in identifying

conspicuous targets in the brain (i.e. contiguous voxels
that form a cluster surpassing thresholds), it has limited
use in unveiling nuances that are jointly encoded by
distributed patterns of neural responses across voxels.
With MVPA, however, researchers are able to reveal
how distributed neural patterns represent the subtle
distinction between self- and other-referential processes.
For example, the patterns of vmPFC activity have been
used to decode if one was entertaining self- or other-
referential thoughts (e.g. Chavez et al. 2016; Yankouskaya
et al. 2017). In addition to deciphering self versus other
using vmPFC patterns, MVPA has been applied to decode
various facets of social cognition using neural patterns
elsewhere in the brain, such as decoding the identities of
fictitious characters (Hassabis et al. 2013), the identities
of personally familiar people (Thornton and Mitchell
2017), and whether a behavior shows goodwill or
malice (Koster-Hale et al. 2013). Together, these studies
demonstrate how MVPA can be used to elucidate our
understanding about the neural basis of social cognition,
capturing the granularity in collective, distributed
codes that often goes unnoticed by the univariate
analysis (for review of recent progress, see Wagner et al.
2019).

While the vmPFC is heavily studied, it is not the only
region involved in self-related processing. Alongside
vmPFC activity, a group of widely distributed brain
regions, which collectively form the brain’s specialized
system for social cognition, have been reliably found
to be involved in various self-related/socio-cognitive
processes (for review, see Doré et al. 2014). For instance,
vmPFC activity usually elevates in tandem with activity
of other midline structures—the posterior cingulate
cortex (PCC), retrosplenial cortex (RSC), and dorsomedial
prefrontal cortex (dmPFC)—when a task requires assess-
ing the personality of people, retrieving autobiographical
episodes, or envisaging prospective and counterfactual
scenarios that involve human activity. Apart from the
brain’s medial aspect, self-referential/social–cognitive
tasks also recruit a set of regions on the brain’s lateral
surface (Olson et al. 2013; Doré et al. 2014; Binney et al.
2016; Chiou et al. 2020), including the bilateral anterior
temporal lobes (ATL), the left inferior frontal gyrus
(IFG), and the inferior parietal lobule (IPL). Resting-state
research has shown that all these medial and lateral
areas, conjointly as the system for social cognition, tend
to stay intrinsically connected during task-free resting
moments and overlap substantially with the cortical
realm of the DN. Regions implicated in social cognition
exhibit a similar functional profile that has been used
to characterize the tendencies of DN regions (Raichle
et al. 2001; Yeshurun et al. 2021): Akin to the DN, social
regions are more active when a situation necessitates
integrating internally constructed representations (e.g.
memories or schemas) with external signals (e.g.
Murphy, Poerio, et al. 2019a). Also resembling the DN,
activation of the social system abates when a situation
requires externally oriented sensorimotor processes
that minimally involve any internal representations

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac135/6565161 by guest on 01 O

ctober 2022



Rocco Chiou et al. | 3

(e.g. Chiou et al. 2020). Importantly, converging evidence
from multiple investigations have shown that the
extensive DN can be fractionated into (at least) 2
subsystems (Humphreys et al. 2015; Braga and Buckner
2017; Braga et al. 2019; Jackson et al. 2019; Chiou
et al. 2020). While the nomenclature used to name the
subsystems of DN varies between studies, a bipartite
structure has been reliably observed in the profiles
of different regions’ connectivity alliance and task-
driven reaction, partitioning the DN into 2 modules.
One subsystem comprises the vmPFC, the PCC/RSC, the
posterior part of IPL, and the hippocampal formation.
Some nodes of this subsystem are suggested to be the
“hub” areas of the DN (Andrews-Hanna et al. 2010),
and they are altogether dubbed “Network-A” by more
recent studies (e.g. Braga and Buckner 2017). These
regions show a strong propensity to be “suppressed”
by contexts that require externally focused sensory–
motoric processes (and “activated” by introspective
processes) and are the quintessential “task-negative”
areas by traditional views of the DN (Raichle et al.
2001). The other subsystem consists of the bilateral
ATL, the left IFG, and temporoparietal junction. In the
field of semantic cognition, these regions are dubbed
the “semantic network” (SN; owing to their robust
activity during semantic processes), while in the field
of connectome research, they are dubbed “Network-B.”
While many areas of the SN are incorporated under
the umbrella of DN regions (Yeo et al. 2011), recent
evidence has indicated that the SN is a functionally
separable entity from DN. Specifically, DN and SN regions
show a similar inclination to deactivate in outwardly
oriented sensorimotor tasks (although the extent of
“aversion” to sensorimotor processing is significantly
more moderate in SN regions, see Chiou et al. 2020).
However, the 2 subnetworks diverge on reaction to
semantic processing—whereas SN activity intensifies for
verbal and nonverbal semantic processing, DN activity
attenuates (Humphreys et al. 2015; Chiou et al. 2018;
Jackson et al. 2019). The partial dissociation between the
2 subnetworks was found both in resting- and task-state
functional magnetic resonance imaging (fMRI) studies.
Together, multiple lines of inquiries have consistently
demonstrated that the DN and SN are functionally
distinct entities (while both are heavily engaged by social
cognition). It is noteworthy that there is less consensus
on the taxonomy of the dmPFC. The dmPFC shares a
similar functional profile to other DN regions during
a variety of social–cognitive tasks (Hiser and Koenigs
2018) and is reliably linked with other core nodes of the
DN, particularly the vmPFC and PCC/RSC (e.g. Bzdok
et al. 2015; Eickhoff et al. 2016; Jackson et al. 2020).
However, the dmPFC is also affiliated with the SN—
relative to the vmPFC as a seed, the dmPFC has tighter
functional coupling with many SN regions in resting
state (Bzdok et al. 2013), and is more reactive to tasks
that lay emphasis on extracting semantic meaning from
lexical stimuli than other DN regions (Chiou et al. 2020).

Pertinent to our main question, while the DN and
SN dissociate on their univariate reaction to different
contexts, it remains unclear whether the 2 subnetworks
carry distinct fine-grained multiple voxel patterns that
convey different information about self vs. other.

In the present study, we investigated the distributed
neural coding that underpins the continuity of “self
vs. other” representations. Self-concept is known to
evolve along one’s lifetime. However, although one’s
beliefs about present self might be radically different
from his/her opinions about past self , the human
mind maintains the stability/continuity of self-identity,
treating present self and past self as dissociable yet
associated entities that represent the same person
(Northoff 2017). Psychological continuity is also appli-
cable to the construal of self versus others, with a close
other (or personally familiar person) perceived as more
affiliated with (similar to) self than a distant other
(personally unrelated person). It remains unknown how
such continuity is encoded in the brain. We instigated
this issue by gradationally manipulating social distance.
We established 4 points of reference: the participant’s
sense of present self , the participant’s sense of past self 10
years ago, a personally familiar other—the participant’s
mother, and a personally unfamiliar but well-known
other—Queen Elizabeth II. Behavioral rating confirmed
that participants rated the 4 persons along a continuum,
with present self being most distinct from the Queen
while past self and mother situated serially somewhere
in between. While undergoing fMRI, participants read
descriptions (either positive or negative personality
traits) in contexts of each of the 4 individuals and
judged whether the description aptly characterized the
person. We employed 2 types of MVPA, machine-learning
classification (Pereira et al. 2009) and representational
similarity analysis (Nili et al. 2014), to investigate how
the 2 subnetworks encoded the psychological continuity
of self versus other and the possible divergence between
DN and SN.

Replicated across multiple analyses, we found (i) the
broad-stroke division of self versus other was the prin-
cipal axis of representational space while social dis-
tance was an auxiliary axis, nested within the principal
dimension; (ii) the DN dissociated from the SN, with
the former carrying more information about personal
identities. In the section of Discussion, we expound on
how recent progress in understanding the topography of
cortical mantle (particularly studies that demonstrated
that the DN is the apex of a cortical hierarchy; Margulies
et al. 2016) could be leveraged to explain the dyadic split
between the DN and SN and their differential contribu-
tions to cognition.

Materials and methods
Participants
Twenty-four volunteers gave informed consent before
the fMRI experiment. The sample consisted of a 10/14
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female-to-male ratio, with average age = 33 years and
standard deviation (SD) = 11. All volunteers are right-
handed and speak English as their mother tongue. All
of them completed the MRI safety screening question-
naire before the experiment and reported not having
any neurological or psychiatric condition. This study
was reviewed and approved by the local research ethics
committee.

Experimental design
Participants completed 2 experiments while undergoing
fMRI in a single session. In the main experiment, par-
ticipants read short phrases describing various traits of
personality or temperament, either positive or negative,
and made a binary button response to answer whether
they reckoned the phrase rightly described the charac-
teristics of the specific person that was under consid-
eration. In the localizer experiment, participants read
short narratives describing either events that involved
human activity or events that involved alterations of
the physical environment and made a binary button
response to answer a comprehension question related
to the narrative they just read. A session began with
the acquisition of each participant’s anatomical scan,
followed by the main experiment that consisted of 8
functional runs of scanning, and ended with the localizer
experiment that contained only a single run.

The main experiment had a 4 × 2 factorial design
(4 individuals: Present Self , Past Self , Mother, and Queen
Elizabeth II; 2 sides of emotive valence: positive vs.
negative traits). We adopted and modified a well-
established fMRI paradigm that has been widely used to
assess the neural substrates of self- and other-referential
processing (e.g. Kelley et al. 2002; Heatherton et al. 2006;
Meyer and Lieberman 2018). The task was to read a short
description in each trial and to evaluate whether or not
it appropriately depicted a particular individual. When
performing the task, participants were presented with a
fixation dot (0.5 s) in each trial, followed by words (3.3 s).
They were required to make a response within the 3.3-
s time limit. The target of assessment (Present Self , Past
Self , Mother, and Queen) was shown above the fixation
dot, and a short phrase describing a certain personality
or temperament trait was shown blow (e.g. “Sincere to
friends” or “Anxious about uncertainty”). When the target
was Past Self , participants reflected on themselves specif-
ically 10 years ago with respect to the phrase. Stimuli
were presented using a block design, controlled with E-
Prime (Psychology Software Tools). Each run consisted
of 16 blocks of trials, with each of the 8 conditions
having 2 blocks. Across the runs and participants, the
order in which the 8 task conditions were presented
was counterbalanced so that each task condition was
equally likely to appear in each of the 128 possible slots
of the 8 runs (i.e. each condition was equally probable to
preceded or succeed any other condition), with stimuli
randomly drawn from a designated stimuli set for a given
run and shuffled across blocks. The stimuli sets were

also counterbalanced across participants; thus, each set
was equally likely to be presented in each run. This fully
counterbalanced design is vital for the subsequent leave-
one-run-out decoding analysis, ensuring that every task
condition and stimuli set appeared in each fold of the
cross-validation. Each block was 19-s long, containing 5
trials and no inter-trial interval. Each run of scanning
was 380-s long, containing 16 task blocks, 15 inter-block
intervals (blank screen, 5-s each), and a 1-s blank at the
end. All text stimuli were white in color, Arial typeface,
28-point in font size displayed on a black background.
Participants reacted to the questions by pressing 1 of
the 2 designated buttons on a MR-compatible response
pad with their right index or middle finger. All visual
stimuli were displayed using high-resolution LCD goggles
(NordicNeuroLab) mounted on top of the head coil.

A total of 160 short phrases were used for evaluating
personality traits. Each phrase contained 3 or 4 words.
A half of the phrases were designed to convey positive
meaning, whereas the remaining half conveyed negative
meaning (the complete set of stimuli are reported in
Supplementary Material). To ascertain that the phrases
express the emotive meaning as intended, we asked 6
volunteers (none participated in the later fMRI study)
to rate the emotive valence of the phrases using a
5-point scale (1 being most negative, 5 being most
positive). Results of rating support the adequacy of
our stimuli: By-subject analysis showed that phrases
designed to convey negative meaning (average ± SEM:
1.7 ± 0.1) were rated significantly lower than those
designed to convey positive meaning (average ± SEM:
4.4 ± 0.1; t(5) = 14.5, P < 0.0001). This difference was also
seen in by-item analysis for every volunteer (all Ps < 10
−10). The length of text stimuli was also equated: No
difference was found between the letter counts between
negative (average ± SD: 22 ± 3.4) and positive phrases
(average ± SD: 21 ± 3.8, P > 0.21, n.s.). Crucially, each of
the 160 phrases was equiprobable to be assessed with
reference to any of the 4 target individuals. Namely, every
phrase appeared 4 times in the experiment but referred
to a different individual each time it was presented.
This circumvented the potential biasing effect of specific
stimuli by equating their frequency in every condition
and ensured that none of the stimuli was repeated—each
combination of description and person was encountered
only once during the experiment and appeared “novel”
from a participant’s perspective. This set-up also ensured
that identical stimuli (descriptions of personality) were
used in each condition of the 4 target individuals, with
the only difference being the cue word that prompted
the current target.

The localizer experiment was based on a well-
established paradigm that has been repeatedly used to
assess the brain regions associated with the processes
of mentalizing/theory of mind (e.g. Saxe and Kanwisher
2003; Saxe and Wexler 2005; Dodell-Feder et al. 2011).
There were 2 conditions in this localizer run: In the
Social condition, participants read a narrative describing
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human interactions; afterwards, they were presented
with a statement about the beliefs or feelings that a
person in the narrative might have, and were asked to
verify whether the statement is true or false. Answering
such questions entailed changing perspectives and
making inferences about someone’s mental states. In
the Nonsocial condition, participants read a narrative
describing the physical state of the world (e.g. “a large
oak tree stood in front of the city hall from the time the
building was built . . . ”) and answered a comprehension
question related to the nonsocial narrative. Participants
had 10 s to read the narrative and were probed with an
ensuing question that was shown for 4 s. The localizer
run was 520-s long, containing 20 task blocks (10 Social
blocks, 10 Nonsocial blocks) and 20 blank intervals
(each 12-s long) that followed each task block. The
2 conditions were presented in an alternating order
and counterbalanced across participants (i.e. a half of
them started with the Social condition; the other half
started with the Nonsocial). We used the same story
materials previously used by Dodell-Feder et al. (2011).
We adopted this localizer task due to the fact that, in
the original study, this paradigm had proved effective
in reliably activating a set of widely distributed brain
regions known to be sensitive to mentalization in specific
(and social cognition in general), which incorporates all
of our regions of interest (ROIs) in the DN, as well as in
the SN (see the details of how we defined the voxels in
the section of Regions of Interest).

MRI acquisition
Some of the regions of our primary interest are situated
in the rostroventral aspects of the brain (e.g. the ATL
and the vmPFC), which are known to be particularly
susceptible to signal-dropout issues (Visser et al. 2010).
To combat signal-dropout in these areas, we adopted a
dual-echo EPI sequence, which has been demonstrated
to effectively improve signal-to-nose ratio in dropout-
prone regions, compared to other conventional imaging
protocols (for precedents using this dual-echo acquisi-
tion protocol, see Halai et al. 2014; Jackson et al. 2015;
Chiou and Lambon Ralph 2019). Scans were acquired
using a 3T Phillips Achieva scanner equipped with a
32-channel coil and a SENSE factor of 2.5. Using this
protocol, each scan consisted of 2 images acquired
simultaneously with 2 echo times: a short echo optimized
to obtain maximum signal from the ventral parts
and a long echo optimized for whole-brain coverage.
The sequence included 31 slices covering the whole
brain with repetition time (TR) = 2.8 s, short/long echo
times (TE) = 12/35 ms, flip angle = 85o, field of view
(FOV) = 240 × 240 mm, resolution matrix = 80 × 80, slice
thickness = 4 mm, and voxel dimension = 3 × 3 mm on
the x-axis and y-axis. To reduce ghosting artifacts in the
temporal lobes, all functional scans were acquired using
a tilted angle, upward 45◦ off the AC–PC line. For the main
experiment, the EPIs were collected over 8 runs; each
run was 380-s long during which 136 dynamic volumes

were acquired (alongside 2 dummy scans, discarded).
For the localizer experiment, the EPIs were collected
from a single run (520 s); 186 dynamic volumes (and 2
dummies) were acquired. To tackle field inhomogeneity,
a B0 field map was acquired using identical parameters to
the EPIs except for the following: TR = 599 ms, short/long
TEs = 5.19/6.65 ms. Total B0 scan time was 1.6 min. A high-
resolution T1-weighted structural scan was acquired
for spatial normalization (260 slices covering the whole
brain with TR = 8.4 ms, TE = 3.9 ms, flip angle = 8o,
FOV = 240 × 191 mm, resolution matrix = 256 × 163, and
voxel size = 0.9 × 1.7 × 0.9 mm).

Preprocessing and GLM
An established procedure was used to combine the 2 vol-
umes from the dual-echo dataset. Using SPM8 (Wellcome
Department of Imaging Neuroscience), we integrated the
standard preprocessing procedure (realignment, slice-
time correction, co-registration, and the linear integra-
tion of the long- and short-echo images) with B0 field-
map correction to prevent distortion due to inhomogene-
ity. The linear averaging approach has been well estab-
lished in previous studies (e.g. Poser et al. 2006; Halai
et al. 2014; Chiou et al. 2018). The combined images were
realigned using rigid body transformation (correction for
motion-induced artifacts) and unwarped using B0 field
map (correction for field inhomogeneity). The integrated
EPIs were then co-registered with each participant’s T1

anatomical image. For the first-level individual analysis,
the β-weight of each experimental regressor was esti-
mated by convolving each task block with a canonical
hemodynamic response function. Six motion parameters
were added into the model as nuisance covariates in the
general linear model (GLM). Behavioral reaction times
were also modeled as parametric modulators to account
for the influence of fluctuating reaction times within a
condition. For the main experiment, each of the 8 exper-
imental conditions was modeled explicitly as a separate
regressor, while resting baseline was modeled implicitly.
For the localizer experiment, the entire 14-s duration of
“story” and “question” intervals was convolved with a
canonical hemodynamic response function, as per pre-
vious studies using the same localizer paradigm (e.g.
Dodell-Feder et al. 2011; Skerry and Saxe 2014, 2015).
Low-frequency drifts were removed using a high-pass
filter of 128 s. Normalized beta-estimates associated with
each voxel and each regressor were subsequently sub-
mitted to MVPA.

Decoding analysis was performed on each participant’s
brain in native space, without spatial normalization
and smoothing. Normalization [Montreal Neurological
Institute (MNI)] and smoothing [full-width at half-
maximum (FWHM) = 8 mm] were only done on the
individual whole-brain searchlight outcomes (accuracy
maps), prior to the second-level random-effect analysis.
The decoding accuracy maps of whole-brain searchlight
analysis were normalized into the MNI standard space
using the DARTEL Toolbox of SPM (Ashburner 2007),
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which has been shown to produce highly accurate
inter-subject alignment (Klein et al. 2009). Specifically,
the T1-weighted image of each subject was partitioned
into gray matter, white matter, and CSF tissues using
SPM8’s “Segmentation” function; afterwards, the DAR-
TEL toolbox was used to create an average template
combining all participants of the group. The gray matter
component of this template was registered into the
SPM’s gray matter probability map (in MNI) using affine
transformation. In the process of creating the group’s
template using individual T1, for each individual DARTEL
estimated “flow fields” that contained the parameters
for contorting native T1-weighted images to the group
template. SPM8 deformation utility was then applied
to combine group-to-MNI affine parameters with each
participant’s “flow fields” to enable tailored warping into
the standard MNI space. At the end of the procedure,
voxel-size of the whole-brain map was resampled to
3 × 3 × 3 mm. Smoothing on the normalized accuracy
maps was then applied using an 8-mm Gaussian FWHM
kernel, consistent with prior studies (e.g. Halai et al. 2014;
Jackson et al. 2015).

Regions of interest
As discussed earlier, we adopted a localizer paradigm
that had previously proved effective in detecting various
target regions in the DN and SN. In the original study that
reported this fMRI paradigm, Dodell-Feder et al. (2011)
tested a sizable sample of 62 participants and contrasted
the Social condition against the Nonsocial one. Using
this contrast, they detected robust activation in 5 areas
of the DN—the dmPFC, vmPFC, PCC, and left/right IPL,
as well as in 3 areas of the SN—the left/right ATL and
IFG. Because the Dodell-Feder et al. results provided a
useful exemplar regarding the loci of neural activity,
their group-level peak coordinates (in the MNI space)
could be used to guide the localization of ROIs in our
participants’ native space. For each participant’s local-
izer data, we applied a t-test, voxel-wise thresholded
at P < 0.001, to generate a whole-brain map of t-values
to identify voxels that responded more intensely to the
Social than Nonsocial condition. Using each participant’s
reversed-normalization parameters computed by SPM,
we first identified 8 “landmark” points (5 DN regions,
3 SN regions) in each person’s native brain that corre-
sponded to the coordinates from the Dodell-Feder et al.
study. Next, we identified the local maxima nearest to
each of the 8 “landmark” points and created a spheri-
cal ROI (radius = 10 mm) centered at the local maximal
coordinate. If no activity was detected at P < 0.001, we
repeated the procedure using P < 0.005 and P < 0.01. This
procedure constrained the localization of ROIs using the
group-level results from Dodell-Feder et al. (2011) while
allowing subject-specific variation in functional activa-
tion. For every participant, we were able to identify 8
ROIs—5 regions of the DN (the dmPFC, vmPFC, PCC, and
left/right IPL) and 3 regions of the SN (the left/right ATL,
and IFG). Meticulous care was taken to ensure that all

ROIs were spatially mutually exclusive—namely, there
was no overlap in the voxels contained in each func-
tionally defined ROI (particularly for the dmPFC and
vmPFC). It is worth emphasizing that, with an indepen-
dent localizer task to select the ROIs, our subsequent
MVPA analyses were devoid of the statistically “double-
dipping” issue (Button 2019).

Multivoxel pattern analysis
Prior to multivariate decoding, we fitted the main
experiment’s data of each participant using a standard
GLM, implemented in SPM8, to compute the β-estimates
of voxel-wise activation elicited by each experimental
regressor. Beta-estimates were computed for each of
the 8 experimental conditions (4 individuals: Present
Self , Past Self , Mother, and Queen by 2 valence qualities:
Positive vs. Negative) and for the 8 runs of scanning,
yielding 64 β-weights. It is important to note that, for
machine learning classification, there is a trade-off
between having many noisy examples (e.g. one β-value
per trial) and having fewer but cleaner examples (e.g.
one β for each task condition per run—obtained by
averaging examples of the same class to subdue their
variability; for discussion on this issue, see Pereira et al.
2009; Haynes 2015). Because our investigation concerned
the very subtle representational differences between
high-order concepts (e.g. one’s sense of self at present
vs. in the past), the β-estimate of a single trial (or
even the β-value computed for a single block) might
introduce stimuli-specific noise and fail to reflect the
most critical facet. Therefore, in order to denoise, we
prioritized having somewhat fewer but robust examples
over many but flimsy examples by estimating a β-
value per regressor per run. However, it is important
to emphasize that, due to the factorial design that we
employed, we still obtained sufficient examples for the
training and testing—for instance, in the 4-way cross-
classification wherein we decoded the 4 persons, trained
using positive trials, and tested using negative ones (and
vice versa), 2 separate sets of 32 examples were used for
training and testing. Our dataset is sufficiently large for
training and validation by the conventional practice of
decoding research (Pereira et al. 2009). We performed
MVPA with the Decoding Toolbox (TDT; Hebart et al.
2015), which employed a linear support vector machine
(SVM) for classification with a “C = 1” cost parameter
(Chang and Lin 2011). Using standard approaches of
cross-validation and cross-classification, we carried out
7 analyses to decode different aspects of “selfness vs.
otherness.” For each classification, a leave-one-run-out
8-fold splitter was used whereby the algorithm learnt
to distinguish between relevant categories using the
data from 7 of 8 runs; its ability to correctly predict was
tested using the unseen data from the remaining “held-
out” run. This procedure was iterated over all possible
combinations of runs used for training and testing. By
partitioning the datasets based on different runs of
scanning, we ensured that there was no contamination
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of information leaking from the training sets to testing
sets. The accuracy scores were then averaged across folds
to produce a mean accuracy score for further statistical
analysis. This was done separately for each participant,
each ROI, and each of 7 decoding analyses. The analyses
included: (1) an aggregate sense of “self” (incorporating
Present Self and Past Self ) versus an aggregate sense
of “others” (incorporating Mother and Queen); (2) finer-
grained differentiation within the self-concepts—Present
Self versus Past Self ; (3) finer-grained differentiation
within the concepts about others—Mother versus Queen;
(4) 4-way differentiation among the 4 individuals—
Present Self versus Past Self versus Mother versus Queen;
(5) cross-classification of self versus other across near
and far social distances—the classifier was trained to
tell apart self versus other based on samples with closer
social distance (i.e. Present Self vs. Mother) and tested using
samples with farther distance (i.e. Past Self vs. Queen); this
was repeated with the reverse mapping (i.e. using the
“distant” pair for the algorithm to learn and the “close”
pair to test its generalizability); (6) cross-classification of
the abstract sense of social distance across the self and
other domain—the classifier was trained to distinguish
Present Self from Past Self and tested using Mother versus
Queen (and vice versa). Successful cross-classification in
this case indicated the acquisition of neural patterns
that encoded the abstract information about near versus
far social relationship, applicable both to the self and
other domain; (7) cross-classification of 4 individuals
across the 2 sides of emotive valence; the classifier
was trained to perform 4-way classification using the
dataset wherein personality judgments were based on
positive traits, and then was tested whether it could
generalize to the unseen data based on negative traits.
This cross-classifying was repeated with the inverse
mapping (trained on the negative trials, tested on the
positive ones). Bonferroni correction was applied to
adjust multiple comparisons based on the number of
ROIs in each analysis (α-level: 0.05/8 = 0.006).

As an exploratory analysis, we used the roaming
whole-brain “searchlight” method to test whether brain
regions outside our selected ROIs also carried task-
relevant information that allowed successful multi-
voxel pattern decoding (Kriegeskorte et al. 2006). Each
“searchlight” was composed of a multivoxel pattern in
a local neighborhood (a sphere of 10 mm radius) that
surrounded each voxel of the brain. For each sphere,
a linear SVM classifier was trained to decode relevant
information and tested using the same leave-one-run-
out procedure as described above; the accuracy score was
assigned to the centroid voxel. This process was repeated
each time using a different voxel as the center as the
searchlight roamed across the brain. Prior to group-
level analysis on the decoding result, each participant’s
classification accuracy map was normalized into the MNI
space using the DARTEL toolbox (see the Preprocessing
section) and smoothed using a Gaussian kernel of 8-mm
FWHM. Voxel-wise decoding accuracy was tested against
the chance level (50% for binary classifications; 25% for

4-way classifications) using a one-sample t-test. Multiple
comparisons were constrained using SPM’s standard
procedure (based on the random-field theory), keeping
familywise error below P < 0.05 for each voxel.

As a complementary approach to machine learning
decoding, representational similarity analysis (RSA) was
employed to investigate whether there was any system-
atic structure that underlay the neural representations
as revealed by the pair-wise resemblance between dif-
ferent task conditions (e.g. whether the multivoxel pat-
terns of Present Self are more similar to Past Self than to
Queen). Based on the established methods (Kriegeskorte
et al. 2008; Nili et al. 2014), we calculated the neu-
ral similarity between each pair of experimental condi-
tions as the Pearson correlation of their vectorized pat-
terns of voxel-wise activity. Note that we used similarity
(Pearson’s r between patterns) as the metric, rather than
their distance/dissimilarity (1–Pearson’s r), to character-
ize the resemblance between contexts, for the sake of
more intuitive and straightforward interpretations (the
2 approaches generated exactly the same conclusion as
by mathematical definition they were 2 sides of the same
coin; for discussion, see Dimsdale-Zucker and Ranganath
2018). Hierarchical clustering analysis was performed on
the distance measures (1-r or 1-τ -a/ρ) to visualize the
categorical grouping of neural representations, embod-
ied in the structure of a dendrogram tree. As per the
standard approach of RSA research (e.g. Nili et al. 2014),
we used the rank-based correlation indices—Kendall’s
Tau (τ -a) and Spearman’s Rho (ρ)—to assess the second-
order relationship between representational similarity
matrices, and considered only the off-diagonal lower-
triangular elements of each matrix to prevent inflation
of correlation size. Given the nonparametric nature of τ -a

and ρ, signed-rank test was used to assess whether the
correlation between 2 representational similarity matri-
ces was significantly greater than chance (one-tailed),
as well as whether the correlation for a certain pair
of matrices significantly differed from those of other
matrices (2-tailed). Multiple comparisons were adjusted
based on the number of ROIs in each analysis (Bon-
ferroni correction). Finally, to evaluate the magnitude
of correlation with reference to a hypothetically “true”
model’s optimal performance (given the amount of noise
in the present data), the noise-ceiling was derived by (i)
calculating the averaged correlation between the group’s
matrix and every individual matrix (the upper bound)
and (ii) performing an iterative leave-one-subject-out
procedure that correlated each individual’s matrix with
all other participants’ averaged matrix (the lower-bound;
cf. Nili et al. 2014).

Results
Machine learning classification analysis
We sought to clarify (i) whether there is a spectrum-
like change in neural coding in relation to social dis-
tance and (ii) whether the 2 subnetworks were equally
capable of representing this “psychological continuity.”
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To answer the 2 questions, we deciphered the multivoxel
patterns of DN and SN to know how the continuity
and boundary of “self vs. other” representations were
encoded. In Supplemental Results 1, we report behav-
ioral data and a confirmatory analysis of the motor cor-
tex that refutes performance-related explanations. Using
the subject-specific peak coordinates derived from the
localizer data, for each individual, we defined 8 spherical
ROIs within the DN and SN—5 ROIs are typically affili-
ated with the DN (the dmPFC, the vmPFC, the PCC, the left
IPL, the right IPL), while 3 are associated with the SN (the
left ATL, the right ATL, the left IFG). Here we used a well-
established localizer paradigm (Dodell-Feder et al. 2011)
to identify ROIs, pinpointing the peaks in the DN and SN
that had greater activation for the Social than Nonsocial
condition. To ascertain the robustness of our findings, we
conducted 3 additional analyses1,2,3. SVMs were trained
on the neural pattern of each ROI. Using a supervised-
learning cross-validation procedure, the algorithms were
tested using “quarantined” data to evaluate whether it
was able to predict the mental content and whether
the chance of successful prediction varied systematically
with network membership.

We began by verifying whether the regional multivoxel
pattern of each ROI allowed deciphering the broad-
stroke information about the aggregate sense of selfness
(Present Self and Past Self ) versus the aggregate sense
of otherness (Mother and Queen). Significantly above-
chance decoding was achieved in every ROI (Fig. 1A),
suggesting that this coarse-grained, binary distinction
between self and other is discernible using the patterns
of local DN/SN activity. Motivated by this result, we
tested whether it would be possible to decode nuance
within the orbit of self-referential ideation (Present Self
vs. Past Self ) and other-referential ideation (Mother vs.
Queen). As Fig. 1A shows, statistically reliable decoding
was achieved in nearly all ROIs (all, except for the left IFG)
for the differentiation between Present Self and Past Self
and in every ROI for the differentiation between Mother
and Queen. This indicates that the regional pattern of
DN and SN activity enabled accurate classification not
only “between” the domains of self versus other but also
the finer-grained subgroups “within” the realm of self
and other. Successful decoding of a socially proximal

1 First, we used the coordinates from activation-likelihood estimation (ALE)
meta-analyses on the literature of semantic processing and social cognition to
relocalize ROIs and performed multivoxel decoding at these literature-defined
locations (Supplemental Results 2). The decoding results based on ALE are
highly consistent with those based on the Dodell-Feder localizer, demonstrat-
ing the robustness of our findings that they are not reliant on a particular
localizer paradigm.

2 Second, we used NeuroSynth to identify the voxels robustly engaged
by semantic tasks (based on 40,030 activations from 1,031 fMRI studies;
Supplemental Results 3). We found that all of the 3 semantic ROIs defined by
our localizer contrast are situated within the semantic clusters of NeuroSynth,
suggesting concordance between our semantic ROIs and the sites found in the
fMRI literature of semantics.

3 Third, we used NeuroSynth to identify the voxels robustly engaged by
self-related processing (based on 4,728 activations from 166 neuroimaging
studies; Supplemental Results 4). We found that all of the 5 default-mode ROIs
defined by our localizer contrast are situated within the self-related clusters
of NeuroSynth, suggesting agreement between our default-mode ROIs and the
sites found in the fMRI literature of self-concept.

(Present Self ) versus a distant concept (Past Self ) within
the “self” domain suggests that information about “social
distance” intersected with “self vs. other.” To untangle
this intricacy, we performed 4-way classification among
the 4 individuals to understand how decoding fared
when the algorithm had to consider “self vs. other” and
“social distance” simultaneously. As shown in Fig. 1A,
while the chance-level dropped from 50% (binary) to 25%
(4-way), reliable above-chance decoding was achieved
in every ROI (also see Supplemental Results 6 for the
confusion matrices), indicating that the neural pattern
that encoded each individual’s specific identity can be
reliably differentiated from all other identities. Critically,
a systematic trend was replicated across all of the 4
analyses: Although significantly above-chance decoding
was obtained in every ROI, classification accuracy was
reliably higher in the 5 ROIs that belong to the DN
(with the PCC reliably reaching the highest accuracy),
compared to the 3 ROIs that belong to the SN. This
“imbalance” between the 2 subnetworks implies that the
DN, as a whole, carried greater amount of information
about personal identities that could be extracted by the
classifier to enable correct predictions. We also examined
whether the univariate amplitude of each ROI could be
used to differentiate individuals. As shown in Fig. 1B,
results revealed that univariate contrasts did not reliably
differ between conditions, suggesting that encoding
personal identity relied on multivariate patterns rather
than differential amplitudes at the univariate-level (also
see Supplemental Results 5 for the data of whole-brain
interrogation for univariate effects).

Although identical stimuli were used in each condition
(i.e. the same personality descriptions were assessed with
reference with different individuals), participants saw
different cue words that reminded them of the current
target person. Thus, an alternative explanation is that
our decoding was driven by word length—e.g. 1 word
(Mother) versus 2 words (Present Self). This alternative
is unlikely given the fact that robust decoding was still
achieved when the lengths of cue words were matched
between conditions—see Fig. 2A for the whole-brain
searchlight interrogation of Present Self versus Past Self
and Fig. 2B for Mother versus Queen. To further rule out
the potential effects of low-level visual features (i.e.
vertical/horizontal lines and curves that constituted
the cue words), we trained the classifier to tell apart
Present Self versus Past Self and tested whether it could
distinguish Mother versus Queen (and vice versa). This
cross-classification was a stringent test to assay whether
the algorithm truly deciphered high-level information (in
this case, social distance that was generalizable across
self and other), independent of sensory factors (there
was minimal visual resemblance between the pair of
“Present Self vs. Past Self” and “Mother vs. Queen”).
Results showed that cross-classification was detected
in the default network—models trained to discriminate
Mother from Queen could also reliably discern Present Self
from Past Self (and vice versa). This suggests that the
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Fig. 1. A) Average accuracy of 4 classification analyses in the 8 ROIs; asterisk indicate significantly above-chance decoding (Bonferroni-corrected for
multiple comparisons). B) Univariate contrast parameters in the same 8 ROIs. ∗P < 0.01 (marginal); ∗∗P < 0.005; ∗∗∗P < 0.001.

multivariate classifiers were, at least in part, overlooking
sensory differences of letters and discovering neural
patterns that enciphered social distance. As illustrated
in Fig. 2C, successful cross-classification was achieved
using the patterns of 3 DN regions in the midline
structures (with the vmPFC being the most informative
area), while decoding was at chance in 2 control
regions (the primary visual and motor cortices). This

rigorous verification suggests that DN regions carried
information about personal identity and social proximity
and abstracted such information away from the sheer
appearance of visual stimuli.

While the standard cross-validation approach unrav-
eled whether the information of self versus other existed
in the multivoxel pattern of an ROI (e.g. whether the
classifier succeeded in predicting if one was reflecting
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Fig. 2. Whole-brain searchlight interrogation results for (A) Present Self versus Past Self, (B) Mother versus Queen, and (C) Cross-classification of “near vs.
far” social distance across the self and other domain. Shown in the inset box is the extracted decoding accuracy from 5 target anatomically defined ROIs
(2 control areas: V1/the primary visual cortex, M1/the primary motor cortex; 3 midline structures of the default-mode system: the PCC, dmPFC, vmPFC;
these ROIs were selected a priori and defined using the anatomical masks of the Wake Forest PickAtlas Toolbox). Correction for multiple comparisons
was via constraining voxel-wise FWE under P < 0.05.

on Mother or Queen based on distributed activities), it
lacked the ability to test whether the brain reinstates a
reproducible and generalizable neural code across vary-
ing situations. A generalizable code indicates abstraction
despite contextual variation. A hypothetical example
that epitomizes this generalizability and invariance
would be that the brain summons reproducible neural
patterns to represent one’s identity no matter whether
that person is seen, heard, or recalled. To overcome the
limitation of standard cross-validation, we conducted
cross-classification—the classifier was trained on data

from one cognitive context and tested on another;
with this procedure, we tested whether there was any
commonality in neural codes invariant to contextual
changes. Two analyses were performed: First, we tested
whether there is generalizable neural coding of self
versus other, irrespective of social distance. This was
achieved by training the algorithm to classify Present
Self from Mother (closer distance) and testing whether
the codes were transferrable to distinguish Past Self
from Queen (farther distance), and vice versa. Second,
we tested whether generalizable patterns of neural
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activities were used to represent the 4 individuals,
irrespective of the emotive valence of descriptions
that were used to probe person-related concepts. By
virtue of our factorial design that crossed 4 identities
with valence, this cross-classification was achieved by
training the algorithm to classify the 4 persons using
data from the positive-valence context and testing the
generalizability using the negative-valence data (and
vice versa). Cross-classification provides a rigorous test
to assay whether invariant neural codes were reliably
summoned to represent the mental concepts about
particular individuals, unaltered by social distance or
emotive valence.

As illustrated in Fig. 3A, the analysis showed that,
based on the neural patterns of 4 regions of the DN
(the dmPFC, vmPFC, PCC, and left IPL), the classifier was
able to extrapolate information (e.g. neural codes elicited
by the pair of near distance—Present Self vs. Mother)
from one context and successfully applied it to cross-
classify in another context with a different degree of
social distance (e.g. far: Past Self vs. Queen). This suggests
context-invariant patterns that encode the essence of “self
vs. other,” generalizable across close and distant social
relationships. The representational content of these
regions is instantiated in the 3 inset boxes of Fig. 2A.
Here we saw a consistent pattern across the 3 ROIs
with highest cross-classification accuracies—when the
ground truth was “self,” the classifier was more inclined
to predict “self” than “other,” and vice versa when the
ground truth was “other.” A coherent but more striking
pattern was found in the 4-way cross-classification
which generalized across positive versus negative
emotive valence. As illustrated in Fig. 3B, based on the
regional activity of an ROI, the algorithm was capable
of extrapolating personal identities from one context
and leveraging the codes to make predictions in another
context of different emotive valence. Significantly above-
chance cross-classification was achieved in every ROI of
the DN and SN. The representational contents of such
cross-valence neural coding were exemplified by the
pattern of PCC activity: As illustrated in the inset box
of Fig. 3B, the percentage of the classifier’s prediction
clearly followed a sequence-like pattern (particularly
conspicuous in the polar “extreme” cases of Present Self
and Queen). For instance, while the classifier correctly
predicted Present Self most frequently when the truth was
indeed Present Self , erroneous response was affected by
social distance in a sequential way—Present Self was most
confused with Past Self , followed by Mother, and least
confused with Queen. A similar pattern (with the opposite
order) was observed for Queen. Together, these indicated
that the underlying neural representations that were
employed to represent the distinction among personal
identities were reproducible across contexts, invariant
to changes of social distance and emotive valence, and
were structured in a gradational manner that followed
interpersonal distance.

By visual inspection on cross-validation and cross-
classification analyses, we noticed a disparity that
decoding accuracy was obviously better in DN regions
than in SN regions. This implies that DN regions might
contain more person-related information than SN
regions. To further investigate this gap in predictive
power between the 2 subnetworks, we employed the
combinatorial-ROI decoding analysis (for precedents, see
Clithero et al. 2009 ; Smith et al. 2013 ; Wang et al. 2017).
This analysis entailed a stepwise procedure wherein
decoding was conducted on a “combined” ROI—each
combined ROI incorporated the pattern of an original
ROI “plus” another ROI, followed by decoding analysis
on the combined pattern; this was iterated for every
pairwise combination of the 8 ROIs. The outcome of
joint-ROI decoding was subsequently compared with
the “baseline” where the decoding was conducted using
the pattern from the original ROI alone. This procedure
revealed whether adding a given ROI improved or
impaired the classifier’s performance through serially
coupling this ROI with all other ROIs and assessing
how the joint-decoding altered relative to baseline. As
has been demonstrated by previous research (Clithero
et al. 2009; Smith et al. 2013; Wang et al. 2017), this
method bypassed the difficulty of directly comparing
between ROIs on the amount of information they carried
(i.e. in the serial joint-decoding, the number of voxels
between combined patterns were exactly matched;
this way, we were able to quantitatively assess if an
ROI was a reliable “contributor” or “beneficiary” when
it was coupled with another ROI). We found that (i)
adding any of the 5 DN regions to the combinatorial
decoding robustly boosted accuracy whereas adding
any of the 3 SN regions had little impact on decoding;
(ii) the 3 SN regions reliably benefited more from
the addition of another ROI whereas the DN regions
benefited less. Shown in Fig. 4 are the example results
of joint decoding for “Self vs. Other” (Fig. 4A), “Present
Self vs. Past Self” (Fig. 4B), and “Mother vs. Queen”
(Fig. 4C). A reliable pattern was seen in these results
(as well as in other joint decoding results). Dovetailing
our earlier data, the joint decoding revealed a robust
“imbalance” between the amount of information carried
by the 2 subnetworks. Whereas DN regions carried
more information about personal identities (making
them “givers” that reinforced classification accuracy), SN
regions carried less information (making them reliable
“takers” in the combinatorial-ROI decoding).

Representational similarity analysis
Results of the classification analysis gave testable
hypotheses about the configuration of neural coding: The
brain might encode personal identities as continuous
progression along a single-dimension spectrum of
social distance, from close to distant, without any
categorical cut-off. Alternatively, the neural codes
could be configured with a boundary that categorically
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Fig. 3. A) Cross-classification of self versus other between near and far interpersonal distances. B) Cross-classification of 4 individual identities between
positive- and negative-valence stimuli. Inset boxes show the confusion pattern of ROIs with highest cross-classification accuracy. Bonferroni-correction
was applied to constrain multiple comparisons. ∗P < 0.01 (marginal); ∗∗P < 0.005; ∗∗∗P < 0.001.

separates selfness from otherness, with finer-grained
differentiation nested within the “self” or “other” domain.
The confusion matrices of classification analysis (see
Supplemental Results 6) only provided an equivocal
answer—although the patterns of confusion showed
that within-domain confusion was more frequent
than between-domain (e.g. Queen was more confused
with Mother than with the 2 variants of self, which

implied a bipartite structure), such analyses did not
directly quantify the extent of the similarity between
2 representations. Unlike classification-style analysis
that by nature discretizes different categories via
imposing a decision boundary, RSA quantifies the
extent of similarity using continuous measures (e.g.
correlation coefficient). Therefore, we exploited RSA to
further investigate the representational “geometry” that
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Fig. 4. Combinatorial decoding was based on an iteratively procedure that examined how decoding performance varied when the neural pattern of an
original ROI was joined by the pattern of another ROI. The values on the color scale indicates changes in decoding accuracy when an ROI was included,
compared to the decoding result based on the original ROI alone, from dark purple (below zero, indicating “decrement”) to bright red (indicating most
“improvement”). A reliable pattern was found across all analyses—as shown by the 3 examples here: A) Present Self + Past Self versus Mother + Queen;
B) Present Self versus Past Self; C) Mother versus Queen. The bar graphs indicate that, across analyses and across original ROIs, the addition of an ROI
that belongs to the default network led to significant improvement of decoding results, whereas ROIs of the SN reliably benefited most from the addition
of another ROI.

underlies the similarity between different categories and
different brain regions.

We first verified whether there was good concordance
between the neural representations of positive- and
negative-valence conditions, given the fact that the
SVM algorithm successfully cross-classified individual
identities across valence. As illustrated in Fig. 5, in
every ROI, a statistically robust correlation was found
between the representational matrices of positive- and
negative-valence contexts, suggesting a coherent motif
that the classifier could extrapolate from one situation

and apply to another. Moreover, the outcomes of RSA
and pairwise classification concurred with one another.
An example result from one ROI is illustrated in Fig. 6:
When the representational similarity was high between
2 conditions (which indicated a higher degree of overlap
in neural coding), there was a corresponding decline
in the accuracy scores of classification (the classifier
was more prone to confusion). This resulted in negative
correlations, reliably seen in both positive- and negative-
valence contexts. Next, hierarchical clustering was
used to visualize the representational distance between
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Fig. 5. Corroborating the results of cross-classification between positive- and negative-valence stimuli, the results of representational similarity analysis
showed that the neural patterns elicited by the 4 personal identities are significantly correlated between the contexts of positive and negative valence.
The correlation was found in every ROI of the DN and SN.
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Fig. 6. The results of representational similarity and machine learning classification analyses dovetailed with each other. Illustrated here are example
results based on the neural patterns of the PCC (coherent results were observed for all other regions)—when 2 experimental conditions were
representationally more similar to each other (hence more confusable), the classifier was less able to predict the correct category label, resulting
in significant negative correlations found in both positive- and negative-valence conditions.

conditions, quantified by the branching of a dendrogram
tree. As Fig. 7 illustrates, in these 4 “core” regions of the
DN (in which we saw generally higher classification
accuracy), there is a clearly bipartite structure in
which neural representations were stratified into 2
branches by “selfness” versus “otherness.” One branch
comprised Present Self and Past Self , while the other
branch comprised Mother and Queen. Interestingly, in the
vmPFC, the representations of Present Self (encompassing
both positive and negative) formed a distinct cluster
that was separable from the remainder (even detached
from Past Self ). This is consistent with the literature
that the vmPFC has a unique role in representing
the “essence” of self-concept. While the clustering
was dominated by the difference of self versus other,
emotive valence had minimal impact on how the neural
codes of different persons were arranged. Moreover,
whereas a clear bipartite split between self and other
was found in the representations of DN regions, the
demarcating dimension was not as clear-cut in the SN

regions, which offers explanation as to why classification
accuracy was generally lower in the SN regions. Taken
together, these results emphasize the convergence of
evidence that we obtained from the RSA/correlation and
SVM/classification approaches.

Replicated across multiple classification analyses,
decoding accuracy was found to be robustly higher
in DN regions compared to SN regions. Furthermore,
combinatorial-ROI decoding also showed that the
addition of DN regions reliably boosted accuracy whereas
adding SN regions caused no improvement, suggesting
an asymmetry of information quantity between the
networks. To investigate this issue further, we used
RSA to examine whether this asymmetry translates
into representational distance between the 2 networks.
Hierarchical clustering showed that the principal factor
that characterized the heterogeneity between neural
representations was the separation between DN and
SN. As the configuration of the dendrogram illustrates
(Fig. 8A), the initial bifurcation between regions was
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Fig. 7. The configurations of each dendrogram tree here show a clear separation between an aggregate class of selfness (Present Self and Past Self ; color-
coded using red and orange, respectively) and aggregate sense of otherness (Mother and Queen; coded using blue and green, respectively). Corroborating
the cross-valence classification, the structure of representational dissimilarity (1 − r) showed that emotive valence had little impact on clustering
arrangement (which indicates the extent of neural similarity). Social distance (coded using different colors) indeed impacted on the clustering, but
it was couched within the “self/other” separation. Emotive valence is coded by geometric shapes: circle—positive, square—negative. This reliable broad-
brush segregation between self and other is found in core DN regions of (A) PCC, (C) left IPL, and (D) right IPL. The vmPFC—in Panel (B)—is somewhat
different that it treats Present Self as a unique category different from all other categories.

driven by the network membership an area belongs to.
Within the cluster of DN, there were 2 subclusters—
the 2 medial prefrontal regions (the dmPFC and vmPFC)
formed a subgroup separable from the posterior regions
(medial-parietal: the PCC; lateral-parietal: the left/right
IPL). Within the cluster of SN, the clustering was
consistent with contemporary theories and findings of
semantic cognition (e.g. Lambon Ralph et al. 2017)—
the areas representing semantic meaning per se (the
left/right ATL) formed a subcluster separable from the
area that controls the retrieval of semantic meaning
(the IFG). This structure is also evident in the similarity
matrices whereby we color-coded the strength of
correlation/similarity (Fig. 8B): Close inspection of the
layout of correlation matrix revealed that the 3 SN
regions congregated to form a cluster that was separable
from all of the remaining DN regions; within the 5 DN

regions, the dmPFC and vmPFC formed a subcluster
while other posterior regions formed another subcluster.
These 2 visualization methods provide complementary
yet consistent insight into the separation of the 2
networks. Finally, we investigated whether the size of
correlation between regions was modulated by whether
it was correlating 2 areas within the same network or
between the 2 networks, and whether positive-/negative-
valence contexts made a difference. Results showed
a significant effect of network membership (Fig. 8C)—
correlation size was significantly greater within the
same network than between networks (Kendall’s τ -a:
F(1,23) = 6.36, P = 0.01, ηp

2 = 0.22), indicating greater rep-
resentational similarity between areas of the same clan.
By contrast, valence had no effect (indicating a coherent
representational structure across valence), nor did
the valence × network interaction (both Ps > 0.55). To
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Fig. 8. A) The configurations of dendrogram show that representational distance (1 minus τ -a or ρ) dissociated between the SN and DN; this was seen
both using Kendall’s Tau-a and Spearman’s Rho. B) Here representational similarity is delineated using correlation matrix. A consistent pattern with
the dendrogram structure is highlighted using black boxes. C) Within-network representational similarity is significantly higher than between-network
similarity, reliably found in both the contexts of positive and negative valence.

ascertain robustness, we repeated all these analyses
using a different type of rank-correlation measure
(Spearman’s ρ) and obtained entirely consistent results
(see Fig. 8). Together, these results complement our
observations of the classification-based analysis and
further highlight the subtlety of subdivision between
networks (and within a network).

Finally, we examined 3 theoretical models, testing
their explanatory power to account for the neural data
(see Fig. 9). The first model was derived from each
participant’s subjective rating of the pairwise similarity
between the personality traits of 2 individuals using
a continuous scale (most dissimilar: 0—most similar:
100). The second model was a hypothetical model
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Fig. 9. The hypothetical models that assumed a binary difference between self and other (middle) and gradational differences of the 4 individuals (right)
are significantly correlated with the neural pattern of every region. ∗∗P < 0.005. Multiple comparisons are controlled by Bonferroni correction. The noise
ceiling is averaged across all regions. By contrast with the other 2 models, the outcomes of behavioral rating (left) were not correlated with the neural
pattern of any region.

based on a binary distinction between self and other—
Present Self and Past Self were collapsed under the “self”
umbrella while Mother and Queen were under the “other”
umbrella. The third model was a hypothetical model
based on gradual changes, with each of the 4 individuals
assumed to be equidistant from one another on the
spectrum. We correlated the neural similarity matrix
of each brain region with these theoretical models
and statistically examined its reliability. We found that
the neural pattern of every brain region significantly
correlated with the binary model and the graded model
(all Ps < 0.005). As illustrated in Fig. 9, for both of the
binary and graded models, the neural pattern of the
PCC was most correlated with the theoretical models
and approached the lower bound of noise ceiling,
which indicates these models’ near-optimal capability
to explain neural data. The correlation sizes with the
theoretical model did not reliably differ between regions,
nor did the comparison between the binary model and
graded model (all Ps > 0.05 by Bonferroni correction).
By contrast, the behavioral rating matrix was not
reliably correlated with any region. Critically, both the
binary and graded models outstripped the model of
behavioral rating in terms of their explanatory power
on the neural data (binary vs. behavioral: P = 0.0008;
graded vs. behavioral: P = 0.001). While subjective rating
best characterized how a participant perceived and
compared the resemblance of 2 characters, such high-
dimensional, multi-faceted understanding (quantified
as their rating) was not fully reflected in the local neural
patterns of DN and SN regions. Instead, while the binary

model was less elaborated (or more impoverished in the
dimensions to characterize the difference of personality)
than behavioral rating, it was better able to capture the
“representational landscape” of neural data. This concurs
with earlier results that the broad-brush separation of
“self vs. other” explained most variance. By contrast,
while socially “close vs. distant” was decodable from
the cross-classification between self and other (implying
that it could be an orthogonal dimension to self/other),
it was a less dominant factor in shaping the landscape of
neural representations.

Discussion
In the present study, we used a series of multivoxel
decoding to unravel the neural representations of self-
versus other-referential concepts, a pivotal psychological
construct that permeates all aspects of social life and has
been argued as a core function of a specialized system
for social cognition. Across multiple analyses, we found
a robust dyadic fractionation between the 2 subnetworks
within the social system—multivoxel patterns reliably
dissociated between regions that are canonically affili-
ated with the DN and those with the SN, evident both in
the outcomes of supervised classification and represen-
tational similarity. Moreover, the representational geom-
etry of neural responses to self- and other-referential
thoughts mirrored the psychological continuum of inter-
personal distance, from an integral sense of Present Self to
a distant other (Queen), with the broad-stroke segregation
of “selfness” from “otherness” being the chief factor that
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divided the representational space, and social distance4

being an auxiliary factor that subdivided concepts within
the self/other domain. Below we discuss the implications
of the present results.

The fusion and fission of DN and SN
In the literature of social neuroscience, various regions
of the DN and SN have been demonstrated to represent
diverse mental states (e.g. Tamir et al. 2016) and
personality traits (e.g. Thornton and Mitchell 2018),
which leads to an agglomeration of the 2 networks as the
social system. In 2 separate bodies of literature, however,
neurolinguistics and human-connectome research have
demonstrated that the DN and SN are 2 distinct entities
that unite and disjoin in various resting and task states,
despite them both favoring social tasks. Data-driven
parcellation methods have demonstrated that DN and
SN regions form a coherent network at rest (e.g. Yeo
et al. 2011). Seed-based connectivity methods have
also shown that key nodes of the SN—the ATL and
IFG—are connected with DN nodes at rest (Jackson
et al. 2016; Humphreys and Lambon Ralph 2017). Their
association during resting state has also been found
during task states: DN and SN activities are both
enhanced by mnemonic retrieval (e.g. autobiographical
memory) and inhibited by externally driven processes
(sensory input or motoric output; Chiou et al. 2020).
However, the 2 networks have also been found to reliably
dissociate: Chiou et al. (2020) demonstrated that, while
both networks showed heightened activation for socio-
cognitive tasks, DN regions preferred tasks emphasizing
the retrieval of episodic details whereas SN regions
preferred tasks emphasizing the semantic interpretation
of perceptual input. Jackson et al. (2019) and Humphreys
et al. (2015) both found that typical semantic tasks
drove a dissociation—they activated SN regions but
suppressed DN regions. Given the mixed picture, the
findings reported in the present study have important
implications for clarifying the relationship between
SN and DN—we demonstrated that both networks
contained information for decoding social categories;
however, compared to the SN, the DN possessed more
abstract/generalizable information that allowed cross-
classifying across distance and valence and exhibited
sharper representational partitions that individualized
each social category. The disparity between the 2
networks has implications for constraining the inter-
pretation on the activity of SN regions during various
socio-cognitive tasks (e.g. Olson et al. 2013; Binney et al.
2016; Wang et al. 2017)—for instance, if some SN regions
prefer social knowledge to other semantic contents, there
might be more exchange of information between these
SN regions and DN regions that could be unraveled using

4 It is noteworthy that temporal distance, as an auxiliary factor, was one of
a multitude of factors that could determine the partition of social categories.
For instance, in the differentiation of Present Self versus Past Self, temporal
distance was a factor closely entangled with social distance and could be an
alternative/additional reason that configured neural representations.

connectivity analysis, compared to SN regions that prefer
nonsocial contents. More broadly, human-connectome
research has shown that both the DN and SN are situated
at the high-order, transmodal end of macroscale cortical
hierarchy (Margulies et al. 2016). In this regard, our
finding may pave the way for future research to clarify
how their positions in this macroscale architecture affect
the information they carry. We elaborate on this in the
following section.

The bipartite split in multivoxel patterns
between networks
Decades of research have accumulated a wealth of data
about how inter-connected brain regions form large-
scale networks, as well as how network architecture
can be mapped onto cognitive functions (for review,
see Uddin et al. 2019). Of particular interest is the
functionality of the expansive DN. This widely dispersed
group of brain areas was originally identified based on
their “deactivation” (relative to task state) during active
engagement in a task state and heightened activation
during wakeful resting periods (Raichle et al. 2001).
Owing to its initial “task-negative” definition, for a long
time this system was assumed to play little role in
goal-oriented behavior. Later research has identified its
contribution in a panoply of goal-directed cognitive tasks
that depend on internally constructed representations
(e.g. memory, schema, etc.), such as social cognition
(e.g. Skerry and Saxe 2015), retrieval of episodic/au-
tobiographical memory (e.g. Spreng and Grady 2010),
skilful application of schema to solve a task (Vatansever
et al. 2017), and visual memory (as compared to visual
perception; see Murphy, Wang, et al. 2019b). Despite
mounting evidence, the “misnomer” of default-mode
system lingers (which is rooted in its original task-
negative definition as the brain’s metabolic default).
Recent research has uncovered a bipartite structure
within the default system (e.g. Braga and Buckner 2017;
Braga et al. 2019; Chiou et al. 2020; DiNicola et al. 2020;
also see Andrews-Hanna et al. 2010 for a tripartite
fractionation of the DN). The bipartite structure has
been discussed under the framework of a macroscale
“gradient” spanning the entirety of cerebrum (Margulies
et al. 2016; Huntenburg et al. 2017). This gradient
reflects a recursive process of information convergence,
occurring in multiple places of the brain, from sensory–
motoric representations that encode the “here-and-now”
of perceptible entities to multisensory representations
that are stored in the DN/SN and encode memories
and concepts. Core regions of the DN (e.g. the PCC
and vmPFC) sit atop this gradient, while core regions
of the SN (e.g. the ATL and IFG) are suspected to be
situated at tiers just below the apex positions (i.e. the
DN’s cores). The functional dissociation between DN and
SN might result from their differential positions on the
cortical gradient. Our results lend some support to such
interpretations—owing to its position at the gradient
apex of multisensory convergence, the DN may contain
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more information about person identities, which are
abstract concepts distilled from multiple modalities and
invariant to varying contexts. Thus, DN regions could
successfully cross-classify across valence and social
distance, unaffected by stimuli appearance, whereas
SN regions exhibited much less capability to cross-
classify (implying that perceptual changes might have
detrimental impact on the SN’s ability to generalize
across situations). These findings are compatible with
the interpretation that the DN contains more abstract
information for social cognition, despite the fact that DN
and SN (univariate) activities both intensified in response
to the demand of social tasks.

Significantly above-chance decoding was found in
both networks for coarser- and finer-grained classi-
fications of self versus other, indicating that both of
them carried sufficient information that allowed the
algorithm to delimit a margin to distinguish between
2/4 classes of data points. Among all ROIs, the PCC
contained most information about personal identities.
This is observed across multiple analyses—decoding
accuracy was highest based on the patterns of PCC; when
the PCC was added to the combinatorial decoding, it
led to greatest boost to the outcome of decoding; the
neural pattern of PCC was most correlated with the
psychological continuity of self versus other, leading to
correlations that approached the noise ceiling (indicating
near optimum). These data are consistent with the
view that the PCC serves as one of the cores of the DN
(Andrews-Hanna et al. 2010) such that its representa-
tional pattern “echoes” the activities elsewhere in the
brain through long-range connections (Leech et al. 2012)
and its dysfunction causes memory-related ailments
(Leech and Sharp 2014). Moreover, it is noteworthy that
the vmPFC represents Present Self as a distinct entity from
all other categories, as evident in how the dendrogram
initially bifurcates in Fig. 7B. This result is consistent
with the specialized role of the vmPFC in representing
the essence of self-concept, adding to a large body
of evidence (for review, Wagner et al. 2019). Recently,
the “self-in-context” model about vmPFC function has
been proposed (Koban et al. 2021)—according to this
view, the vmPFC represents “self” in a compressed
low-dimensional space that captures relevant features
of a context (e.g. human interaction, social norm) to
construct “self.”

It is important to note that any individual brain region
may participate in multiple brain networks and subserve
multiple cognitive functions even though a region has
a primary network affiliation or has certain types of
functions that it is frequently associated with (for dis-
cussion, see Pessoa 2014). The “network membership” of
a brain region can be affected by various factors, such
as its position in the network (i.e. “connector” regions
between 2 networks tend to have more fluid network
affiliation, relative to regions within the “heartland” of
a module; see Spreng et al. 2010; Spreng et al. 2013),
the cognitive state one is under (i.e. contexts can drive a

region to fluidly couple with different networks), as well
as the methods used to probe the relationship between
regions (for discussion, see Petersen and Sporns 2015).
These factors may particularly affect several “connec-
tor” regions that bridge between 2 networks, making
them exhibit characteristics of both systems (such as
the dmPFC that bridges core DN nodes with SN nodes;
see Spreng et al. 2013). We speculate that this may offer
explanations regarding the fluid functional profile of
dmPFC: Previously, using univariate analysis, we found
that the dmPFC responded preferentially to semantic
tasks over episodic tasks, which makes it more akin to
the behavior of SN regions (e.g. the IFG and ATL) than DN
regions (e.g. vmPFC; Chiou et al. 2020). However, using
multivariate analysis, in the present study we found
that representational content of the dmPFC was more
similar to those of DN regions relative to SN regions,
making it more affiliated to the DN. Together, our data are
consistent with the previous literature concerning this
region’s somewhat inconclusive affiliation with different
networks; it also highlights the flexibility of a “connector”
region and the peril of imposing a rigid demarcation on
the perimeter between networks.

The representational structure of self- versus
other-concept
Our findings add to the literature that deciphering
self-/other-referential thoughts is possible based on
the patterns of DN and SN regions (Hassabis et al.
2013; Thornton and Mitchell 2017; Courtney and Meyer
2020; Peer et al. 2021). Moreover, our cross-classification
analyses have important implications for the cognitive
theories of self-processing. The ability to successfully
cross-classify has been considered as a benchmark of
testing whether there is genuine abstraction of neural
coding across domains (Kaplan et al. 2015). We found
that the brain uses robustly contextually generalizable
neural patterns to encode selfness and otherness such
that this cardinal representational code applies across
near and far interpersonal distances and across positive-
and negative-valence depictions. On top of the separation
between self and other, social distance was another
factor that sculpted the representational landscape
of neural codes. As discussed earlier, “self vs. other”
serves as the primary dimension that delineates the
most salient difference between classes, while other
auxiliary dimensions (e.g. social distance) are couched
within the primary segregation. This is reminiscent of
representational dimensions of visual perception (Konkle
and Caramazza 2013): Animacy (living vs. nonliving) is
the primary dimension that separates animate entities
from inanimate items, while object size serves as the
secondary dimension that assorts subgroups within
the inanimate class (Long et al. 2018). Interestingly,
participants’ behavioral rating on personality was not
correlated with the neural pattern of any region. A
possible reason of this result might be that while the
local pattern of an ROI is sufficient to represent (i)
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the binary/broad-stroke difference of self versus other
and (ii) the extent of social distance that intersects
with the “self/other” dimension, it was insufficient to
capture the more sophisticated pattern inherent in the
thoughts behind the behavioral rating. As the matrix
of behavioral rating illustrates (Fig. 9), our participants
rated their own mother as more similar to themselves
and as highly different from the Queen; this led to a clear
cluster that lumped the 3 personally familiar targets
together (Present Self , Past Self , and Mother), separate from
the Queen. The majority of participants rated that the
similarity of Present Self and Mother was even higher than
that of Present Self and Past Self , which reflects complex,
metacognitive thoughts that apparently transcend the
binary “self vs. other” boundary. This implies elaborated
and multifaceted considerations behind the ratings
might require additional neurocomputation beyond the
information within a single DN/SN region, whose local
pattern cares primarily about “self vs. other” plus social
distance.

Conclusion
In the present study, we reported evidence of multivoxel
decoding that manifested a robust bipartite split within
the brain’s social system into the DN and SN. Our find-
ings showed that the 2 subnetworks within the social
system contribute differentially to the representations of
social concepts, highlighting the peril that the DN and
SN should not be conflated as a single, homogenous
system. These findings inform the burgeoning field of
human-connectome research and its relationship with
social neuroscience; our results also shed light on the
decade-long investigation into how the brain implements
the conceptual distinction of “self vs. other.”
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Supplementary material is available at Cerebral Cortex
Journal online.
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