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a b s t r a c t 

The flexible retrieval of knowledge is critical in everyday situations involving problem solving, reasoning and social interaction. Current theories emphasise the 

importance of a left-lateralised semantic control network (SCN) in supporting flexible semantic behaviour, while a bilateral multiple-demand network (MDN) is 

implicated in executive functions across domains. No study, however, has examined whether semantic and non-semantic demands are reflected in a common neural 

code within regions specifically implicated in semantic control. Using functional MRI and univariate parametric modulation analysis as well as multivariate pattern 

analysis, we found that semantic and non-semantic demands gave rise to both similar and distinct neural responses across control-related networks. Though activity 

patterns in SCN and MDN could decode the difficulty of both semantic and verbal working memory decisions, there was no shared common neural coding of 

cognitive demands in SCN regions. In contrast, regions in MDN showed common patterns across manipulations of semantic and working memory control demands, 

with successful cross-classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated according to the information they maintain about cognitive 

demands. 
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. Introduction 

Our semantic knowledge encompasses disparate features and asso-

iations for any given concept (e.g., APPLE can go with PIE but also

ORSE). While this allows us to understand the significance of diverse

xperiences, it raises the question of how we generate coherent pat-

erns of semantic retrieval that diverge from strong associations in the

emantic store. The controlled semantic cognition framework suggests

hat a distributed neural network manipulates activation within the se-

antic representational system to generate inferences and behaviours

hat are appropriate for the context in which they occur ( Lambon Ralph

t al., 2017 ). In well-practised contexts, in which the relevant infor-

ation is robustly encoded, conceptual representations need little con-

traint from semantic control processes to produce the correct response.

n contrast, situations requiring the retrieval of weakly-encoded infor-

ation or uncharacteristic features, and the suppression of strong but

urrently-irrelevant patterns of retrieval, depend more on control pro-

esses to shape semantic retrieval ( Jefferies et al., 2020 ). Converging

vidence from neuroimaging, patient and neuromodulation studies sug-

ests that left inferolateral prefrontal cortex, posterior middle temporal

yrus, pre-supplementary motor area and intraparietal sulcus form a se-

antic control network (SCN); these sites all respond to diverse manipu-

ations of semantic control demands ( Jefferies and Lambon Ralph 2006 ;
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offman et al., 2010 ; Jefferies 2013 ; Lambon Ralph, 2014 ; Nozari and

hompson-Schill, 2016 ; Lambon Ralph et al., 2017 ; Chiou et al., 2018 ).

An outstanding question concerns the degree to which the neural

echanisms underpinning semantic control are specialised for this do-

ain. A bilateral “multiple demand ” network (MDN), including frontal,

arietal, cingulate and opercular brain regions ( Duncan and Owen

000 ; Duncan, 2010 ; Fedorenko et al., 2013 ), supports a diverse range

f cognitively-demanding tasks, including selective attention, working

emory (WM), task switching, response inhibition, conflict monitor-

ng and problem-solving ( Fedorenko et al., 2013 ; Fedorenko, 2014 ;

rittenden et al., 2016 ; Assem et al., 2020 ; Diachek et al., 2020 ). Meta-

nalyses of neuroimaging studies identify a network for semantic con-

rol that partially overlaps with MDN ( Fig. 3 ; Noonan et al., 2013 ;

ackson,2020 ). However, there also appear to be anatomical differences

etween these networks: regions supporting semantic control extend

nto more anterior areas of left inferior frontal gyrus, and posterior mid-

le temporal areas, which are not implicated in executive control more

enerally. Moreover, SCN shows strong left-lateralisation, in contrast to

ther aspects of control, which are bilateral or even right-lateralized

 Gonzalez Alam et al., 2018 , 2019 ; Jefferies et al., 2020 ). 

Moreover, it is still poorly understood whether semantic control de-

ands are analogous to domain-general control processes. Some studies

ave argued that there are important differences in the processes sup-
y 2021 
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orted by MDN and SCN: for example, when semantic category is used as

he basis of go-no go decisions, behavioural inhibition is still associated

ith right-lateralised MD regions, not activation within SCN ( Gonzalez-

lam et al., 2018 ). This suggests that semantic control processes are

nly recruited when conceptual information itself must be controlled,

nd not whenever semantic tasks become hard. Semantic control might

nvolve distinct neural processes not shared by the control of action or

isual attention, since controlled semantic retrieval draws on hetero-

odal memory representations and information integration, supported

y the default mode network (DMN) ( Price et al., 2015 ; Margulies et al.,

016 ; Price et al., 2016 ; Pylkkänen, 2019 ; Lanzoni et al., 2020 ), along

ith control processes ( Davey et al., 2016 ). The SCN sits at the inter-

ection of DMN and MDN, showing structural and intrinsic functional

onnectivity to regions in both networks ( Davey et al., 2016 ) and falling

etween these networks on whole-brain connectivity and functional gra-

ients ( Wang et al., 2020 a): in this way, it might support functional

oupling between DMN and MDN in the left-lateralised semantic net-

ork. While a few studies have manipulated both linguistic and non-

inguistic demands, observing common modulation of the neural re-

ponse in anterior insula and/or anterior cingulate cortex ( Eckert et al.,

009 ; Erb et al., 2013 ; Fedorenko et al., 2013 ; Piai et al., 2013 ), we are

till lacking knowledge about whether MDN and SCN regions share the

ame neural coding. 

Here, we conducted a pair of fMRI studies to assess the nature of neu-

al signals relating to semantic and domain-general control demands.

irst, we contrasted parametric manipulations of difficulty for seman-

ic judgements (by varying the strength of association) and verbal WM

by varying load), to identify sites specifically implicated in seman-

ic and non-semantic control. We matched the task/trial structure and

nput modality across semantic and non-semantic domains. Next, us-

ng pattern classification analyses which examine the multivariate pat-

ern of activation across voxels ( Haynes and Rees, 2006 ; Norman et al.,

006 ; Tong and Pratte, 2012 ; Haynes, 2015 ), we tested which regions

n the brain could decode semantic demands and WM load. Finally, we

ssessed whether SCN and MDN regions could cross-classify difficulty

cross semantic and non-semantic judgements. In this way, the current

tudy tests the extent to which a shared neural code underlies both se-

antic control and WM load. 

. Materials and methods 

.1. Participants 

A group of 32 young healthy participants aged 19–35 (mean

ge = 21.97 ± 3.47 years; 19 females) was recruited from the Uni-

ersity of York. They were all right-handed, native English speakers,

ith normal or corrected-to-normal vision and no history of psychiatric

r neurological illness. The study was approved by the Research Ethics

ommittee of the York Neuroimaging Centre . All volunteers provided in-

ormed written consent and received monetary compensation or course

redit for their participation. The data from one task was excluded for

our participants due to head motion, and one additional WM dataset

as excluded due to errors in recording the responses. The final sample

ncluded 28 participants for the semantic task and 27 participants for

he WM task, with 26 participants completing both tasks. 

.2. Design 

Participants completed two experiments, presented in separate ses-

ions. The first session included four functional scans while participants

erformed a semantic association task. The second session included

hree WM functional scans and a structural scan (see Fig. 1 for an exam-

le of each task). A slow event-related design was adopted for the two

essions in order to better characterise the activation pattern for each

rial. Each trial lasted 9s and each run included 48 trials in the semantic

ask and 40 trials in the WM task. 
2 
.3. Semantic association task design 

Participants were asked to decide if pairs of words were semantically

ssociated or not. The stimuli were 192 English concrete noun word-

airs. We excluded any abstract nouns and items drawn from the same

axonomic category, so that only thematic links were evaluated in this

ask (i.e. forest – path or bath – duck; these items are related because

hey are found or used together). The strength of the thematic link be-

ween the items varied parametrically from no clear link to highly re-

ated; in this way, participants were free to decide based on their own

xperience if the words had a discernible semantic link. There were no

correct’ and ‘incorrect’ responses: instead, we expected slower response

imes and less convergence across participants for items judged to be

related’ when the associative strength between the items was weak,

nd for items judged to be ‘unrelated’ when the associative strength be-

ween the items was strong (see behavioural below). Overall, there were

oughly equal numbers of ‘related’ and ‘unrelated’ responses across par-

icipants. 

Each trial began with a visually presented word (WORD-1) which

asted 1.5 s, followed by a fixation presented at the centre of the screen

or 1.5 s. Then, the second word (WORD-2) was presented for 1.5 s,

ollowed by a blank screen for 1.5 s. Participants had 3 s from the onset

f WORD-2 to judge whether this word pair was semantically associated

r not by pressing one of two buttons with their right hand (using their

ndex and middle fingers). During the inter-trial interval (3 s), a red

xation cross was presented until the next trial began. Both response

ime (RT) and response choice were recorded. Participants finished 4

uns of the semantic task, each lasting 7.3 min. Before the scan, they

ompleted a practice session to familiarise themselves with the task and

ey responses (see Fig. 1 for task schematic). 

.4. Semantic stimuli 

To quantify the strength of semantic relationships in the association

ask, distributed representations of word meanings were obtained from

he word2vec neural network, trained on the 100 billion-word Google

ews dataset ( Mikolov et al., 2013 ). In common with other distribu-

ional models of word meaning, the word2vec model represents words

s high-dimensional vectors with 300 dimensions, where the similar-

ty of two words’ vectors indicates that they appear in similar contexts,

nd thus are assumed to have related meanings. The word2vec vectors

sed here were found to outperform other available vector datasets in

redicting human semantic judgements in a recent study ( Pereira et al.,

016 ). We defined the strength of the semantic relationship between

ords using the cosine similarity method. This value was calculated for

ach word pair presented as a trial, allowing us to characterise the trials

n a continuum from strongly related to unrelated. 

While word2vec values were higher for trials judged to be seman-

ically related overall (see below), there was considerable variation for

oth related and unrelated judgements. Since different numbers of items

ere judged to be thematically related and unrelated across partici-

ants, we split related and unrelated trials for each participant into five

evels according to their word2vec value, each with the same number of

ord-pairs. In order to simplify the presentation of the results, the anal-

sis was based on these five levels of word2vec unless otherwise stated.

e reasoned that higher word2vec values would be associated with

ower task demands for trials judged to be related, and with higher task

emands for trials judged to be unrelated. This was confirmed by be-

avioural analyses (see below). Word2vec values did not correlate with

sycholinguistic variables from N -Watch ( Davis, 2005 ), including word

ength (number of letters: Word1, r = 0.099, p = 0.17; Word2, r = 0.113,

 = 0.119), word frequency (Word1, r = 0.033, p = 0.657; Word2,

 = 0.111, p = 0.127) or imageability (Word1, r = -0.004, p = 0.958;

ord2, r = -0.010, p = 0.901). We also computed a semantic decision

onsistency index for each word pair by calculating how many partici-

ants judged it to be semantically associated (expressed as a proportion
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Fig. 1. Experiment paradigm and behavioural results. A. Semantic association task; participants were asked to decide if word pairs were semantically related or not. 

B. Word pair examples for both related and unrelated decisions from one participant, with association strength increasing from Level 1 (L1; little semantic overlap) 

to Level 5 (L5; high semantic overlap). These trials were assigned to related and unrelated sets of trials on an individual basis for each participant, depending on 

their decisions, and then split into 5 levels, based on word2vec scores. C. RT for semantic decisions across 5 levels of word2vec for word pairs judged to be related 

and unrelated. D. Working memory task; participants were asked to decide if two probe letters were presented in a sequence, in any order. E. Working memory load 

ranged from 3 to 7 items. F. RT for WM trials across 5 levels of load, for correct and incorrect decisions. 
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f the total participants tested). Word2vec was significantly positively

orrelated with this consistency value ( r = 0.773, p < 0.0001), showing

hat people were more likely to judge word pairs as related when they

ad high word2vec values. 

.5. Verbal working memory task 

The WM task had a similar structure to the semantic task (see Fig. 1 ).

ach trial began with a letter string (3 to 7 letters) presented at the

entre of the screen for 1.5 s, followed by a fixation presented for 1.5 s.

articipants were asked to remember these letters. Next, two letters were

hown on the screen for 1.5 s. Participants judged whether both of them

ad been presented in the letter string by pressing one of two buttons

ithin 3 s (participants were told the order of the letters on the screen

id not matter). Then a red fixation cross was presented for 3 s, until the

tart of the next trial. Participants completed 3 runs, each containing 40

rials and lasting for 6.1 min. WM load was manipulated by varying the

umber of letters memorised in each trial; there were five levels of load

rom 3 to 7 letters (to match the five levels of word2vec in the semantic

ask), with 8 trials at each level in each run, presented in a random order.
3 
oth response time (RT) and accuracy were recorded, and participants

ere asked to respond as quickly and accurately as possible. 

.6. Mixed-effects modelling of behavioural data 

Since participants judged different numbers of items to be semanti-

ally related and unrelated in the semantic task, mixed-effects modelling

as used for the analysis of the behavioural data. This approach is par-

icularly suitable when the number of trials in each condition differs

cross participants ( Mumford and Poldrack, 2007 ; Ward et al., 2013 ).

emantic association strength (or WM load) was used as a predictor

f the decision participants made (in the semantic task: judgements of

hether the words were related or unrelated; in the WM task: whether

he response was correct or incorrect) and, in separate models, how

ong the reaction time this decision took (i.e., RT). Participants were

ncluded as a random effect. The mixed-effects model was implemented

ith lme4 in R ( Bates et al., 2014 ). We used the likelihood ratio test

i.e., Chi-Square test) to compare models with and without the effect

f semantic association strength and WM load level, in order to deter-

ine whether the inclusion of the difficulty manipulations significantly

mproved the model fit. 
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.7. Neuroimaging data acquisition 

Imaging data were acquired on a 3.0 T GE HDx Excite Magnetic

esonance Imaging (MRI) scanner using an eight-channel phased array

ead coil at the York Neuroimaging Centre. A single-shot T2 ∗ -weighted

radient-echo, EPI sequence was used for functional imaging acquisi-

ion with the following parameters: TR/TE/ 𝜃 = 1500 ms/15 ms/90°,

OV = 192 × 192 mm, matrix = 64 × 64, 3 × 3 × 4 mm voxel size,

2 axial slices without a gap. Slices were tilted approximately 30 ° rel-

tive to the AC-PC line to improve the signal-to-noise ratio in the an-

erior temporal lobe and orbitofrontal cortex ( Deichmann et al., 2003 ;

immer and Büchel, 2019 ). Anatomical MRI was acquired using a T1-

eighted, 3D, gradient-echo pulse-sequence (MPRAGE). The parame-

ers for this sequence were as follows: TR/TE/ 𝜃 = 7.8 s/2.3 ms/20°,

OV = 256 × 256 mm, matrix = 256 × 256, and slice thickness = 1 mm.

 total of 176 sagittal slices were acquired to provide high-resolution

tructural images of the whole brain. The relatively short TE was used

o minimise the EPI distortion around ATL. We calculated the tem-

oral signal-to-noise ratio (tSNR) for each participant by dividing the

ean of the smoothed time series in each voxel by its standard devia-

ion in each run; we then averaged the tSNR across all runs for the se-

antic task. These tSNR values were comparable with previous studies

 Hoffman et al., 2015 ; Striem-Amit et al., 2018 ), and were at acceptable

evels ( Murphy et al., 2007 ), although lowest at the anterior temporal

ole (mean value: 107.8). Supplementary Fig. S5 shows tSNR for a range

f ROIs and the full tSNR map in MNI space is available to view online:

ttps://neurovault.org/images/441927/ . 

.8. fMRI data pre-processing analysis 

Image pre-processing and statistical analysis were performed using

EAT (FMRI Expert Analysis Tool) version 6.00, part of FSL (FMRIB soft-

are library, version 5.0.11, www.fmrib.ox.ac.uk/fsl ). The first 4 vol-

mes before the task were discarded to allow for T1 equilibrium. The

emaining images were then realigned to correct for head movements.

ranslational movement parameters never exceeded one voxel in any di-

ection for any participant or session. Data were spatially smoothed us-

ng a 5 mm FWHM Gaussian kernel. The data were filtered in the tempo-

al domain using a nonlinear high-pass filter with a 100 s cut-off. A two-

tep registration procedure was used whereby EPI images were first reg-

stered to the MPRAGE structural image ( Jenkinson and Smith, 2001 ).

egistration from MPRAGE structural image to standard space was fur-

her refined using FNIRT nonlinear registration ( Andersson et al., 2007 ).

.9. Univariate parametric modulation analysis 

We examined the parametric effect of semantic control demands (i.e.

he strength of association between WORD-1 and WORD-2) in the deci-

ion phase of the task, using general linear modelling within the FILM

odule of FSL with pre-whitening turned on. Trials judged to be se-

antically related (YES trials) and unrelated (NO trials) by participants

ere separately modelled, using their demeaned word2vec values as

he weight, and the RT of each trial as the duration. In addition, we

ncluded unmodulated regressors for the trials judged to be related and

nrelated, as well as regressors containing WORD-1 and the within-trial

xation between the words. The second fixation interval between the

rials was not coded and thus treated as an implicit baseline. Regressors

f no interest were included to account for head motion. Three contrasts

related vs. baseline, unrelated vs. baseline, and related vs. unrelated)

ere defined to examine the effect of semantic control demands on trials

udged to be related and unrelated. 

The WM task was analysed in a similar way. Correct and incorrect

rials were separately modelled. For correct trials, the parametric effect

f difficulty was modelled by including memory load as the weight, and

eaction time as the duration of each trial; we also included unmodu-

ated regressors for these trials. In addition, we included three unmodu-
4 
ated regressors: incorrect trials, the first word and the first within-trial

xation. The second fixation interval between the trials was not coded

nd thus treated as an implicit baseline. Regressors of no interest were

ncluded to account for head motion. Two contrasts (correct > baseline

nd the reverse) were defined to examine how memory load parametri-

ally modulated neural activation in the brain. 

For both semantic and WM models, a higher-level analysis was con-

ucted to perform cross-run averaging using a fixed-effects model. These

ontrasts were then carried forward into the group-level analysis, using

MRIB’s Local Analysis of Mixed Effects 1 + 2 with automatic outlier de-

ection ( Beckmann et al., 2003 ; Woolrich et al., 2004 ; Woolrich 2008 ).

nless otherwise noted, group images were thresholded using cluster

etection statistics, with a height threshold of z > 3.1 and a cluster prob-

bility of p < 0.05, corrected for whole-brain multiple comparisons using

aussian Random Field Theory. The same threshold was used for both

nivariate and MVPA analysis. Uncorrected statistical maps are avail-

ble to view online: ( https://neurovault.org/collections/8710/ ). 

.10. Multivoxel pattern analysis 

.10.1. Single-trial response estimation 

We used the least square-single (LSS) approach to estimate the acti-

ation pattern for each trial during the decision phase in the two tasks.

ach trial’s decision was separately modelled in one regressor and all

ther trials were modelled together as a second regressor; we also in-

luded WORD-1 and the fixation as additional regressors. Pre-whitening

as applied. The same pre-processing procedure as in the univariate

nalysis was used except that no spatial smoothing was applied. This

oxel-wise GLM was used to compute the activation associated with

ach trial in the two tasks. Classification was performed on t statistic

aps, derived from beta weights associated with each regressor, to in-

rease reliability by normalising for noise ( Walther et al., 2016 ). 

.11. Network selection and parcellation 

We used two complementary multivariate approaches to assess rep-

esentations of control demands; both network/ROI-based and whole-

rain searchlight methods. We used two networks defined from previ-

us studies: the semantic control network (SCN) and multiple-demand

etwork (MDN) ( Fedorenko et al., 2013 ; Jackson, 2020 ). We decom-

osed these networks into semantic control specific (SCN specific) ar-

as, which did not overlap with MDN; multiple-demand specific (MDN

pecific) regions, which did not overlap with SCN; and shared control

egions identified from the overlap between MDN and SCN. As a com-

arison, we also examined regions within the semantic network not im-

licated in control. To identify these regions, we downloaded a semantic

eta-analysis from Neurosynth (search term ‘semantic’; 1031 contribut-

ng studies; http://www.neurosynth.org/analyses/terms/ ). Then, we re-

oved regions within this semantic network which overlapped with the

wo control networks to identify semantic regions predominately asso-

iated with semantic representation or more automatic aspects of se-

antic retrieval, mostly within DMN (e.g. in lateral temporal cortex

nd angular gyrus). All of the voxels within the network maps defined

bove were included within network-based ROIs. Intraparietal sulcus

as not included because the sequence did not allow us to cover the

hole brain for some participants. In total, thirty ROIs were defined;

our ROIs in semantic non-control areas, three ROIs in SCN areas, six

OIs in the overlap of MDN and SCN, and seventeen ROIs in MDN spe-

ific areas. These thirty ROIs are available online: https://osf.io/bau5c/ ,

ee Fig. 4 A for the four networks. 

.12. Regions of interest definition 

To further examine cross-task decoding accuracy in SCN and MDN

egions in a supplementary analysis designed to minimise the likelihood

f a type II error, two ROIs per participant (cubes with a radius of three

https://www.neurovault.org/images/441927/
http://www.fmrib.ox.ac.uk/fsl
https://www.neurovault.org/collections/8710/
http://www.neurosynth.org/analyses/terms/
https://www.osf.io/bau5c/
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oxels containing 343 voxels) were defined using the univariate para-

etric analysis. The SCN ROI was based on individual peak responses

o the univariate parametric effect of task difficulty for semantically-

elated trials in the left IFG (pars triangularis from the Harvard-Oxford

tlas). By selecting the region maximally sensitive to semantic con-

rol demands for each participant, we could investigate whether the

ame pattern of response within this region was elicited by easy and

ard semantic and WM trials. Mean MNI coordinates across the sam-

le were X = -50, Y = 29, Z = 13. We defined the MDN ROI using

ach participant’s peak coordinate for the conjunction of parametric

ffects for semantic control (from related trials) and WM load in the

re-supplementary motor cortex (pre-SMA). The mean MNI coordinates

cross the sample were X = -6, Y = 22, Z = 52. These sites are shown in

upplementary Fig. S4A. 

.13. Support vector regression analysis 

Epsilon-insensitive support vector regression analysis (SVR)

 Drucker et al., 1997 ) was conducted using a linear support vector

achine (SVM) ( Chang and Lin, 2011 ) and custom code implemented in

ATLAB (The MathWorks) (code is available at: https://osf.io/bau5c/ ).

n contrast to conventional support vector machine classification (SVM),

he SVR does not depend on categorical classification (i.e., predictions

alling on the correct or incorrect side of a hyperplane); instead, it

utputs estimations using a regression approach. This approach was

sed to estimate the difficulty level or cognitive demand for each trial.

or each level of difficulty (based on inverse word2vec for semantic

rials judged to be related, word2vec for semantic trials judged to

e unrelated and memory load in the WM task), the test and train-

ng data were normalised (i.e., mean subtracted and divided by the

tandard deviation) across voxels within each region of interest (i.e.,

earchlight, ROI) ( Misaki et al., 2010 ). This allowed an evaluation

f the pattern of activity across voxels without contamination from

ean signal differences within the searchlight or ROI as a whole across

he difficulty levels (i.e., the univariate effect) ( Misaki et al., 2010 ;

imura and Poldrack, 2012 ; Coutanche, 2013 ), while MVPA may still

otentially be sensitive to subtle changes in activity patterns that ac-

ompany difficulty-based deactivation/activation in each voxel within

 searchlight cube or an ROI. The SVR cost parameter was set to 0.001.

or each searchlight or ROI, the accuracy of SVR prediction was then

alculated within-participant, defined as the z -transformed Pearson’s

orrelation coefficient between actual and predicted values of the

ifficulty parameter for the left-run-out data, with the actual difficulty

evels ranging from 1 (easy) to 5 (hard) in both tasks. The epsilon

arameter in the SVR model was set to epsilon = 0.01 ( Jimura and

oldrack, 2012 ). 

For each participant, three separate SVR classifiers were trained to

ecode cognitive demands: these examined the difficulty of semantic

rials judged to be related (difficulty maximised for low association tri-

ls), the difficulty of semantic trials judged to be unrelated (difficulty

aximised for high association trials), and the difficulty of WM trials

difficulty maximised for highest memory load). We examined gener-

lization of difficulty effects within the semantic domain (i.e. between

rials judged to be semantically-related and unrelated). In order to test

hether semantic control and executive control share a common neural

ode, we also performed a series of generalization (cross-task classifica-

ion) analyses, in which classifiers were trained on each task type (se-

antic related; semantic unrelated; WM) and tested on the other task

ypes (i.e. trained on semantic related, tested on WM), resulting in 4 SVR

ecoding accuracy types. All classification analyses were performed us-

ng a leave-one-run-out cross-validation. SVR decoding was performed

sing searchlight and ROI approaches. 

For searchlight-based analysis, for each voxel, signals were extracted

rom a cubic region containing 125 surrounding voxels. The searchlight

nalysis was conducted in standard space. A random-effects model was
5 
sed for group analysis. Since no first-level variance was available, an

rdinary least square (OLS) model was used. 

For the network ROI-based analysis, because the number of voxels

n the network ROIs varied and differences in ROI size are likely to

nfluence classifier performance, classification analyses were performed

y randomly subsampling 200 voxels from each ROI. This process was

epeated for 100 iterations for each ROI and subject, with each iteration

nvolving a different random sample of 200 voxels. The 100 iterations

n each ROI were averaged into one value, and this value from all ROIs

ere averaged again for each brain network. 

. Results 

.1. Behavioural results 

Overall, equal numbers of word pairs were judged to be re-

ated or unrelated by the participants (mean ratio: 0.491 vs. 0.495,

2 (1) = 0.00021, p > 0.995). Linear mixed effects models examined

hether associative strength and WM load were reliable predictors of

ehaviour. We found that both the strength of the semantic association

word2vec value) and WM load successfully manipulated task difficulty.

or the semantic task, the continuous word2vec value was positively

ssociated with a higher probability that participants would identify a

emantic relationship between the words ( 𝜒2 (1) = 2421.3, p < 0.001)

sing a logistic regression approach. When word pairs were grouped

nto 5 levels according to their word2vec value, the relationship was

till significant ( 𝜒2 (1) = 2467.8, p < 0.001). 

Since we used a continuous manipulation of associative strength, and

here is no categorical boundary of word2vec values which can capture

he trials reliably judged to be related and unrelated, we were not able to

ompute a traditional error score for the semantic task. We expected that

or those word-pairs judged to be related in meaning, higher word2vec

alues would facilitate semantic decision-making. For these trials, the

attern of semantic retrieval required by the task (i.e. the identification

f a linking context) is likely to be well-supported by dominant informa-

ion in long-term memory. Since the linking context is highly accessible

n these trials, there is less uncertainty about the relevant response, and

otential conflict between the response options is reduced. In contrast,

hen items are judged to be semantically related even when they have

ess semantic overlap as assessed by word2vec, it is thought that con-

rol processes must be engaged to shape activation within the semantic

tore; this is because a dominant linking context is not readily available

n long-term memory. In this situation, task-irrelevant but more domi-

ant semantic associations to the two words may need to be suppressed

nd there is likely to be more uncertainty about the decision. For tri-

ls in which words are judged to be unrelated in meaning, the effect of

trength of association is expected to have the opposite effect on task

ifficulty. When the two items have very different meanings and are

ot remotely connected to each other, it is relatively easy to decide that

hey are not semantically associated; low word2vec values should be

ssociated with lower decisional uncertainty. In contrast, when partici-

ants decide that two words are unrelated even when they are somewhat

inked according to word2vec, the semantic decision is expected to be

ore difficult, with greater uncertainty or response conflict emerging

rom their partial relationship. Participants may need to recruit control

rocesses to overcome this conflict or uncertainty. 

Mean RT for each level is presented in Fig. 1 C, separately for re-

ated (YES) and unrelated (NO) decisions. To examine how association

trength level modulated RT for trials judged to be related and unre-

ated, we performed linear mixed effects analyses with participant as a

etween-subject variable and association level as a within-subject vari-

ble. This revealed a significant effect of level of association strength

or both related and unrelated decisions. Association strength level was

egatively associated with RT ( 𝜒2 (1) = 146.6, p < 0.001) for related

rials and positively associated with reaction time for unrelated trials

 𝜒2 (1) = 58.668, p < 0.001). It was more difficult for participants to

https://www.osf.io/bau5c/
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1 A supplementary analysis, thresholded at Z > 2.6, revealed a more dis- 

tributed neural substrate for WM load including bilateral middle frontal gyrus, 

precentral gyrus and occipital fusiform cortex; see Supplementary Fig. S2A. 
etrieve a semantic connection between two words when strength of

ssociation was lower; on the contrary, it was easier for them to de-

ide there was no semantic connection between word pairs with low

ord2vec values. 

For the WM task, the proportion of correct responses was 84.8%,

hen all memory load levels were considered. The more items to be

aintained or manipulated in WM, the more difficult the trial was ex-

ected to become. A logistic regression showed that higher WM load was

ssociated with lower accuracy ( 𝜒2 (1) = 112.4, p < 0.001). A further

inear mixed effects model with participant as a between-subject vari-

ble and memory load as a within-subject variable revealed a significant

ositive relationship between load level and RT for correct responses

 𝜒2 (1) = 39.826, p < 0.001). 

Lastly, a two-way repeated-measures ANOVA was conducted exam-

ning the effects of task condition (semantic related, unrelated and WM

orrect) and difficulty level (five levels per task) on the proportional

hange in RT for each difficulty level of the task, relative to the av-

rage RT for each condition. The results showed a significant interac-

ion between conditions and difficulty levels ( F (5.395,134.881) = 8.329,

 < 0.001, Greenhouse-Geisser corrected), along with a main effect of

ifficulty level ( F (3.134, 78.346) = 53.262, p < 0.001, Greenhouse-

eisser corrected). Together, these results suggest that association

trength and memory load successfully manipulated task difficulty, with

emantic association showing a stronger influence on RT than WM

oad. 

.2. fMRI results 

.2.1. The parametric effect of word2vec on brain activation 

We identified brain areas showing an increase or decrease in ac-

ivation as a function of association strength (using the continuous

ord2vec scores). It was harder for participants to decide that items

ere semantically related when they were weakly associated; conse-

uently, we would expect stronger responses in semantic control and

ultiple demand regions for these trials. It was also harder for partici-

ants to decide that items were semantically unrelated when they had

reater word2vec values; therefore we would expect opposite effects of

ord2vec for related and unrelated trials in brain regions supporting de-

anding semantic decisions. The direct comparison of word2vec effects

or semantically-related and unrelated decisions can identify brain areas

esponding to semantic similarity but not difficulty, while the combina-

ion of negative effects of word2vec for related decisions and positive

ffects of word2vec for unrelated decisions can identify brain regions

hat respond to the difficulty of semantic decisions, without a confound

f semantic relatedness. 

For related trials, weaker associations elicited greater activity in

egions linked to semantic control in previous studies, including left

nferior frontal gyrus (IFG), left middle frontal gyrus (MFG), superior

rontal gyrus (SFG) and left posterior middle temporal gyrus (pMTG);

ee Fig. 2 A. Similarly, when participants decided that items were unre-

ated, there was stronger activation in left inferior frontal gyrus, middle

rontal gyrus, superior frontal gyrus and frontal orbital cortex (FOC)

hen these items had higher word2vec scores; see Fig. 2 B. 

We investigated common and distinct effects of semantic control de-

ands across trials classified as related and unrelated. A conjunction

nalysis revealed that rejecting strongly associated word pairs and ac-

epting weakly associated word pairs recruited common semantic con-

rol regions including left inferior frontal gyrus, middle frontal gyrus,

uperior frontal gyrus and frontal orbital cortex, see Fig. 2 D. There were

o significant differences in the parametric effects of semantic control

emands or semantic relatedness for trials judged to be related and unre-

ated in a direct contrast. There were also no common effects of semantic

imilarity (i.e. positive effects of word2vec that were shared across re-

ated and unrelated decisions). 

In addition, although we could not compute task accuracy in our

ain analysis (since we manipulated strength of association in a con-
6 
inuous way, and participants were asked to split this distribution into

elated and unrelated trials), a supplementary control analysis removed

rials with unexpected word2vec scores, given the decision that was

ade. An additional regressor was included to capture trials judged to

e related even though they had particularly low word2vec values (bot-

om 25% of word2vec values), and trials judged to be unrelated that

ad particularly high word2vec values (top 25% of word2vec values).

he results were very similar to the analysis above; see Supplementary

ig. S1A. 

.3. The parametric effect of working memory load on brain activation and

he comparison with semantic control 

For correct WM trials, a significant parametric effect of memory load

as found in right middle frontal gyrus, frontal pole (FP) and superior

rontal gyrus consistent with previous studies in which higher WM loads

licited greater activity in distributed bilateral areas within the multiple-

emand network (MDN); see Fig. 2 C. 1 

We performed further analyses to establish the common and dis-

inct parametric effects of semantic control demands and WM load. We

ompared correct WM trials and word pairs judged to be semantically-

elated, since participants made YES decisions in both situations. Since

emantic relatedness was varied in a continuous fashion while WM load

as manipulated across five levels, we first divided the semantically re-

ated trials into five difficulty levels according to their word2vec values,

ith lower word2vec corresponding to harder trials (re-analysis of the

nivariate activation for the semantic task using these five levels repli-

ated the findings above and obtained highly similar results, see Supple-

entary Fig. S1B). To simplify the following univariate and multivariate

esults focussed on the comparison of the semantic and WM tasks, we

sed five levels of difficulty or association strength for the thematically

elated and unrelated decisions, unless otherwise mentioned. 

A conjunction analysis showed a significant overlap between seman-

ic control demands and WM load in superior frontal gyrus and pre-

upplementary motor area (pre-SMA); see Fig. 2 F. Direct contrasts of

hese semantic and non-semantic difficulty effects revealed stronger ef-

ects of difficulty in the WM than the semantic task in right-lateralized

egions mainly within the multiple-demand network, including right

iddle frontal gyrus, frontal pole and supramarginal gyrus (SMG);

ig. 2 G. There was a greater effect of semantic control demands in dis-

ributed areas in the left hemisphere, including IFG, frontal orbital cor-

ex, superior frontal gyrus, lateral occipital cortex (LOC), precuneus,

ippocampus, parahippocampal gyrus and temporal fusiform, consis-

ent with previous observations that semantic control is strongly left-

ateralized; Fig. 2 E. A supplementary ROI-based analysis using percent

ignal change to directly compare the parametric effect of difficulty

gainst implicit baseline in the two tasks showed that the task differ-

nces in most of the clusters in Fig. 2 E and G were driven by increased

esponses to more difficult trials, and not solely by negative parametric

ffects of difficulty in the other task (see detailed information in Sup-

lementary Fig. S2B). 

.4. Identifying the neural coding of semantic and working memory 

emand using a searchlight approach 

In order to test whether the same neural code supported semantic

ontrol demands and WM load, we examined classification of control

emands (task difficulty) in each task, and cross-classification of dif-

culty across tasks using a whole-brain searchlight approach. For the

emantic task, word2vec (as a measure of relatedness) and difficulty (as
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Fig. 2. Univariate results with cluster thresholded at Z = 3.1, p = 0.05. A. Parametric modulation effect of associative strength for trials judged to be semantically 

related. B. Parametric modulation effect of associative strength for trials judged to be unrelated. C. Parametric modulation effect of WM for correct trials. D. The 

conjunction of semantic control parametric effects across trials judged to be related and unrelated (i.e. negative word2vec for related trials and positive word2vec for 

unrelated trials). E. Areas showing a stronger parametric effect of control demands for semantic judgements (negative effect of word2vec for related trials) compared 

to WM (effect of memory load for correct trials). F. The conjunction of the parametric modulation effect for semantic control (from related trials) and WM load 

(correct trials). G. A larger parametric modulation effect for WM load (correct trials) compared with semantic control demands (negative effect of word2vec on 

semantically-related trials). There are no additional clusters within brain views not shown for each contrast. 
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ssessed by behavioural performance) show an opposite relationship for

rials judged to be related and unrelated. We therefore reasoned that a

lassifier sensitive to control demands would show a positive correla-

ion between actual and predicted control demands when trained on

elated trials (which had low word2vec values for more difficult trials)

nd then tested on unrelated trials (which had high word2vec values for

ore difficult trials), or vice versa. In contrast, brain regions showing a

egative correlation across these trial types would be sensitive to the as-

ociative strength of the presented items, irrespective of the subsequent

udgement. Moreover, brain regions able to cross-classify difficulty be-

ween semantic and WM tasks are sensitive to domain-general control

emands. 

After controlling for mean univariate activation (see Methods), we

ound difficulty could be decoded for semantically-related trials in lat-

ral and medial frontal and parietal areas, bilaterally, as well as left

osterior middle temporal gyrus, see Fig. 3 A. We also found signifi-

ant decoding of difficulty for semantically-unrelated trials in similar

reas, see Fig. 3 B. Finally, we searched for brain regions that supported

ross-classification of difficulty across semantically-related and unre-

ated trials (training on one condition and testing on the other). Signifi-

ant positive cross-classification was identified in distributed regions in-

luding left inferior and middle frontal gyrus, bilateral superior frontal

yrus/paracingulate gyrus, left posterior middle temporal lobe, bilat-

ral lateral occipital cortex/angular gyrus, see Fig. 3 D. These sites were

ensitive to semantic difficulty irrespective of strength of association,

hile there were no significant clusters showing negative correlation in

he cross-decoding between related and unrelated trials, suggesting our

lassifiers were not sensitive to semantic relatedness. 

Brain regions that coded for WM load were found in frontal, parietal,

emporal as well as visual cortex, bilaterally (see Fig. 3 C). Compared to
7 
he neural underpinnings of semantic control, which were strongly left-

ateralised, the multivariate effect of WM load was bilateral. There was

ignificant cross-task classification between semantic and WM tasks in

ilateral insula, pre-supplementary motor area and left precentral gyrus,

ee Fig. 3 E. Most of these voxels fell within the SCN + MDN (29.6%) and

DN (52%), and few were within SCN (0.9%), see Fig. 3 G. This re-

ult suggests that SCN regions do not support a shared neural coding

etween semantic and non-semantic control demands, while MDN re-

ions (including those overlapping with SCN) show common patterns

cross manipulations of semantic and WM control demands. In contrast,

ross-classification of difficulty between related and unrelated semantic

ecisions overlapped with SCN-only regions (9716 voxels in total, see

ig. 3 F). 

.5. Neural coding of semantic and working memory demand in large-scale

rain networks 

To check the robustness of our results, we examined the cross-

lassification of difficulty across tasks within pre-defined MDN and SCN

etworks. We performed a series of SVR decoding analyses in ROIs se-

ected to fall within the following areas: (i) sites within the semantic

etwork but not implicated in control (largely within DMN); (ii) SCN

defined as voxels within the semantic control network identified by

oonan et al. (2013) and updated by Jackson (2020) , and yet out-

ide the MDN); (iii) regions common to both SCN and MDN; (iv) MDN

defined as voxels within the multiple-demand network identified by

edorenko et al. (2013) , and not within the SCN, see Fig. 4 A. 

The results are summarised in Fig. 4 B. There was significant general-

zation of difficulty within the semantic domain (between semantically-

elated and unrelated trials) in all control networks (all p ≤ 0.001),
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Fig. 3. SVR decoding of control demands. A. Brain regions representing control demands for semantic trials judged to be related. B. Brain regions representing 

control demands for semantic trials judged to be unrelated. C. Brain regions representing WM load. D. Brain regions with significant cross-classification of difficulty 

between semantic trials judged to be related and unrelated (R2U). E. Brain regions with significant cross-task classification of difficulty (Semantic2WM). F. Voxel 

distribution in Fig. 3 D (cross-classification between semantic trials judged to be related and unrelated) across regions identified as (i) semantic not control, (ii) within 

the semantic control network (SCN) but outside multiple-demand cortex (DMN), (iii) within both SCN and MDN, and (iv) falling in MDN regions not implicated 

in semantic cognition. Voxels showing significant cross-classification outside these networks are also shown (Others); 9716 voxels in total. G. Voxel distribution in 

Fig. 3 E (cross-task classification of difficulty for semantic and WM tasks) across regions identified as (i) semantic not control, (ii) SCN only, (iii) SCN + MDN, (iv) 

MDN only, and other networks, 933 voxels in total. 
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nd also in non-control-semantic regions ( p = 0.002). All p values were

djusted by Bonferroni correction. In contrast, cross-classification be-

ween semantic and WM tasks was found only for the MDN-only and

DN ± SCN regions ( p = 0.018 and p = 0.012, respectively, with Bon-

erroni correction applied). SCN-only and non-control-semantic regions

ere unable to cross-classify difficulty across semantic and WM tasks

 p = 0.594 and p = 0.891, respectively, with Bonferroni correction ap-

lied). These findings suggest that semantic control demands and WM

oad do not share a common neural code in semantic-only networks,

lthough they do in multiple-demand regions. Semantic demand is not

nalogous to other types of control within the SCN. 

Recent studies have suggested that there is graded functional change

rom DMN through SCN regions to MDN: these networks form an or-

erly sequence on the cortical surface that is captured by the “principal

radient ” of intrinsic connectivity ( Margulies et al., 2016 ; Wang et al.,

020 a). If SCN is spatially and functionally intermediate between DMN

nd MDN, we would expect a linear change across brain networks in

ross-task decoding accuracy for semantically-relevant DMN, SCN-only

nd SCN ± MDN regions. The MDN-only regions were removed from

his analysis, since this network by definition fell outside semantically-

elevant cortex, and consequently included many regions that were not

djacent to SCN ± MDN on the cortical surface (see Fig. 4 A). Repeated-

easures ANOVA revealed a significant linear contrast effect in cross-
8 
ask decoding accuracy across semantic not control, SCN-only and

CN ± MDN regions ( F (1,25) = 17.032, p ≤ 0.001). Simple t -tests revealed

here was significantly higher decoding accuracy in SCN ± MDN regions

han in semantic not control regions ( p ≤ 0.001, Bonferroni corrected),

nd higher cross-task decoding accuracy in SCN ± MDN than SCN-only

egions ( p = 0.042, Bonferroni corrected). The linear contrast effect

as also significant for the cross-decoding between related and unre-

ated trials ( F (1,25) = 19.06, p ≤ 0.001). Simple t-tests revealed there

as significantly higher decoding accuracy in MDN ± SCN regions than

n semantic not control regions ( p ≤ 0.001, Bonferroni corrected), and

 marginal effect of higher decoding in MDN ± SCN regions than in SCN

egions before multiple comparison correction ( p = 0.064). Thus, our re-

ults suggest graded changes in the representation of control demands

rom DMN through SCN to SCN ± MDN. 

These analyses support our key conclusions: cross-classification of

ifficulty between semantic and WM tasks was only found in MDN-only

nd SCN ± MDN regions, not in SCN-only or semantic not control network

egions; and there was a pattern of decreasing cross-task decoding from

hared MDN ± SCN regions, through SCN to semantic regions not impli-

ated in control. However, to some degree, the multivariate response in

ll four networks was sensitive to task difficulty. 

To confirm that our results were not underpinned by specific ROIs in

ach network but reflected the characteristics of neural coding of cogni-
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Fig. 4. Decoding cognitive demand in large- 

scale brain networks; bars reflect average accu- 

racy which is different from the conventional 

SVM classification and instead measures cor- 

relation (Fisher’s z-transformed) between ac- 

tual task demand (difficulty) and predicted 

task demand. A. Brain regions for each net- 

work. B. R2U: Cross-condition classification be- 

tween semantic related and unrelated trials. Se- 

mantic2WM: Cross-task classification between 

semantic difficulty and WM load. Cross-task 

decoding was not significantly greater than 

chance level (0) in the ‘semantic, not control’ 

and SCN networks, and significantly higher 

than chance level in MDN + SCN regions and 

MDN ( p = 0.012 and p = 0.018, respectively, 

with Bonferroni correction applied). All other 

decoding accuracy results are significantly higher than chance level in all networks ( P < 0.001). Bonferroni correction was applied for each condition, separately; 
∗ ∗ ∗ p < 0.001/4. ∗ ∗ p < 0.01/4. ∗ p < 0.05/4. 
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ive demands across the networks, we randomly sampled 200 voxels in

ach network across ROIs in each iteration. Highly similar results were

ound, and details are provided in Supplementary Fig. S3. An additional

upplementary analysis was designed to minimise the likelihood of Type

I errors when assessing whether SCN can cross-classify difficulty across

emantic and WM tasks. To maximise the chances of observing this pat-

ern, we identified ROIs for individual participants based on their peak

esponse in the univariate analysis of task demands. The results, shown

n Supplementary Fig. S4, reproduce the pattern reported above: pre-

MA in MDN was able to cross-classify difficulty between semantic and

M tasks, while left IFG in SCN could not. 

. Discussion 

This study parametrically manipulated the difficulty of semantic and

erbal WM judgements to delineate common and distinct neural mech-

nisms supporting control processes in these two domains. Across two

xperiments, we investigated the brain’s univariate and multivariate re-

ponses to different manipulations of difficulty: in a semantic related-

ess task, we varied the strength of association between probe and target

ords, while in a verbal WM task, we manipulated the number of items

o be maintained (WM load). Retrieving semantic links between weakly

ssociated words is known to elicit stronger activation within the “se-

antic control network ” (SCN) ( Noonan et al., 2013 ; Jackson, 2020 ),

hile higher loads in WM are associated with greater responses within

he “multiple demand network ” (MDN) ( Fedorenko et al., 2013 ) – partic-

larly, left-lateralised parts of this network for verbal WM ( Emch et al.,

019 ). This comparison is therefore ideal to establish similarities and

ifferences in the neural basis of these forms of control, with any diver-

ence unlikely to be accounted for by the use of language (as both tasks

ere verbal in nature). We obtained convergent evidence across analy-

es for both common and distinct neural responses to difficulty across

etworks. Dorsolateral prefrontal cortex and pre-supplementary mo-

or area (within MDN) showed a common response to difficulty across

asks; in decoding analyses, MDN showed common patterns of activation

cross manipulations of semantic and non-semantic demands, and cross-

lassification of difficulty across tasks. In contrast, left inferior frontal

yrus within SCN showed an effect of difficulty that was greater for the

emantic task; moreover, there was no shared neural coding of cognitive

emands in SCN regions, consistent with the view that semantic control

as a neural basis distinct from other cognitive demands beyond the

emantic domain. 

The semantic control network, encompassing left inferior frontal

yrus and posterior middle temporal gyrus, is known to activate across

 wide range of manipulations of semantic control demands – including

 stronger response for weak associations, ambiguous words and multi-

le distractors ( Noonan et al., 2013 ; Davey et al., 2016 ; Jackson, 2020 ).
9 
ince these regions are implicated in semantic cognition, as well as in

ontrol processes, one point of contention is the extent to which seman-

ic retrieval per se, which is potentially increased in more demanding

onditions, can explain this pattern of results. A unique strength of this

tudy is that we can distinguish the impacts of semantic control and

ithin-trial semantic similarity through the comparison of difficulty in

rials judged by participants to be related and unrelated. This is because

emantic similarity has opposite effects of difficulty in these two sets

f trials: when participants decide there is a semantic link between two

ords, more control is needed to make this link when the words are

eakly associated; in contrast, when participants decide there is no se-

antic link between two words, more control is needed for this deci-

ion when the words are strongly associated. The univariate analyses

ound equivalent effects of difficulty in left inferior frontal gyrus for

rials judged to be related and unrelated; consequently, we can con-

lude this site is sensitive to the difficulty of semantic decisions and not

trength of association per se. 

In addition to investigating the involvement of SCN and MDN in

emantic and non-semantic tasks differing in difficulty, we examined

he characteristics of cognitive control in multivariate analyses of acti-

ation patterns using a whole-brain searchlight approach and SVR de-

oding for the first time. Our results revealed significant information

bout semantic demands within both SCN and MDN; however, cross-

lassification of control demands across related and unrelated semantic

rials identified regions within SCN that lie beyond MDN, while cross-

lassification of control demands across semantic and WM tasks identi-

ed MDN regions – both regions that overlap with SCN, and other MDN

egions that lie beyond the semantic network. These findings point to

unctional heterogeneity across control network regions ( Dixon et al.,

018 ). Though previous studies revealed that distributed areas in the

eft lateral frontal, medial frontal, lateral temporal and parietal regions

upport the representation of semantic relatedness ( Mahon and Cara-

azza, 2010 ), our decoding generalization analysis provided strong ev-

dence that semantically-related and unrelated judgements share the

ame neural code relating to difficulty in SCN (despite opposing effects

f semantic similarity). In contrast, we were not able to decode diffi-

ulty across semantic and WM tasks in SCN (i.e. training on WM load

nd testing on semantic association strength or vice versa), even in an

OI analysis, suggesting that the multivariate neural codes relating to

he difficulty of semantic and WM judgements may be distinct in SCN. 

In network-based decoding analyses, we also examined the decoding

f task demands within parts of the semantic network not implicated in

ontrol processes, primarily regions within DMN (including anterior lat-

ral temporal cortex and angular gyrus). Decoding was less accurate in

MN than in control networks – yet semantic regions not implicated in

ontrol were still able to decode semantic task difficulty. DMN has long

een considered a ‘task-negative’ network, only engaged when the brain
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s not occupied by an externally-presented task, and associated with

nternally-oriented cognitive processes such as mind-wandering, mem-

ry retrieval and future planning ( Buckner and DiNicola 2019 ). DMN

egions typically show deactivation relative to rest during challenging

asks ( Raichle et al., 2001 ; Raichle, 2015 ; Buckner et al., 2008 ). Though

ur multivariate analysis examined normalised activation across vox-

ls within each region of interest (i.e., searchlight, ROI) ( Misaki et al.,

010 ; Jimura and Poldrack, 2012 ; Coutanche, 2013 ), decoding may still

e sensitive to voxel-by-voxel patterns of activation and/or deactivation

n DMN, for example, reflecting the way this network changes its pat-

ern of connectivity to suit the ongoing task demands ( Cole et al., 2013 ).

n line with this view, semantically-relevant regions of DMN show in-

reased connectivity to executive cortex during control-demanding se-

antic tasks ( Krieger-Redwood et al., 2015 ). Moreover, beyond the se-

antic domain, DMN shows dynamically-changing patterns of connec-

ivity with other brain networks, including those implicated in control

nd attention, as WM load is varied ( Vatansever et al., 2015 ). In line

ith the view that DMN may play a more active role in even demand-

ng aspects of cognition, recent studies show that multivariate patterns

n both DMN and MDN track semantic goal information instead of con-

eptual similarity ( Wang et al., 2020b ), and that DMN represents broad

ask context ( Wen et al., 2020 ). The current results are therefore po-

entially consistent with growing evidence that DMN can contribute

o controlled as well as more automatic aspects of cognition, even as

t deactivates ( Elton and Gao, 2015 ; Raichle, 2015 ; Vatansever et al.,

015 ; Vatansever et al., 2017 ), although load-dependent multivariate

esponses in DMN appear not to be shared across task contexts (perhaps

ecause relevant patterns of connectivity depend on the task). 

As proposed by Duncan (2010 , 2013 ), MDN captures an abstract

ode relating to the difficulty of decisions across multiple domains.

rontal-parietal regions in MDN have been shown to flexibly repre-

ent goal-directed information, including visual, auditory, motor, and

ule information, to support context-appropriate behaviour ( Cole et al.,

013 ; Crittenden et al., 2016 ; Woolgar et al., 2016 ; Bhandari et al.,

018 ). However, the current study, to our knowledge, is the first to test

hether semantic and non-semantic verbal demands share a common

eural currency in the brain using cross-classification analyses. Con-

erging evidence from the ROI/Network and searchlight-based analyses

evealed that regions in MDN (including the overlap with SCN) could

ross-classify task difficulty across semantic decisions and WM; in par-

icular, the searchlight revealed bilateral insula in MDN, and a cluster

n the left posterior IFG/operculum in SCN ± MDN. These regions were

ensitive to demands across tasks, as expected given the involvement

f MDN in cognitive control across domains. This observation is note-

orthy given previous proposals that the “language ” network is largely

istinct from MDN regions in left IFG ( Fedorenko and Blank, 2020 ); we

nd that additional regions are recruited to support semantic control,

n line with this view, but that MDN regions are also recruited in these

ircumstances, giving rise to functional overlap. 

Our results also suggest that SCN diverges from this pattern in im-

ortant ways. There was no common neural code relating to task de-

ands in SCN-specific regions or non-control semantic areas. Given that

 heteromodal semantic control network which only partially overlaps

ith MDN has been shown to support the retrieval of both verbal and

on-verbal information ( Krieger-Redwood et al., 2015 ), semantic con-

rol processes could regulate the activation of unimodal regions support-

ng specific semantic features, relevant to visual, auditory and action

ttributes – for example, when linking dog to beach, activation might

e focussed on running, swimming and digging actions, as opposed to

he physical features of a dog (such as its ears and tail). This genera-

ion of an appropriate pattern of semantic retrieval is thought to rely on

nteractions between the heteromodal ‘hub’ within anterolateral tem-

oral cortex and ‘spoke’ systems in unimodal cortex; semantic control

rocesses could bias activation towards relevant spoke systems, result-

ng in a more task-appropriate response within the heteromodal hub

hen these features are distilled into a coherent meaning ( Jackson et al.,
10 
019 ; Zhang et al., 2020 ). This process could be largely analogous to

he way that MDN regions are thought to bias processing towards task-

elevant inputs or sensory features. However, our observation that there

re semantic-specific control processes beyond MDN is also consistent

ith the view that this mechanism is supplemented by separate seman-

ic control representations that interface with the long-term conceptual

tore. This evidence allows us to reject the account that semantic control

emands are exactly analogous to other types of cognitive demand. 

The functional distinction between SCN and MDN is also anticipated

y contemporary accounts of brain organization that suggest that neural

unction is organised along a connectivity gradient from unimodal re-

ions of sensorimotor cortex, through executive regions to transmodal

MN ( Margulies et al., 2016 ; Huntenburg et al., 2018 ). Wang et al.,

2020a) showed that this gradient can capture the orderly transitions

etween MDN, SCN and DMN in semantic processing. Given that SCN

as greater proximity to DMN than MDN along this principal gradient

f connectivity, this network might be able to more efficiently select,

etrieve and act on semantic information stored in heteromodal DMN

egions. Our results showed a decreasing pattern in cross-task decoding

nd the representation of WM load from MDN and shared MDN + SCN

egions, through SCN to semantic regions not implicated in control (see

upplementary Materials Fig. S3) – with this series of networks fol-

owing the principal gradient ( Wang et al., 2020 a). In a similar way,

onzález-García et al., (2018) found regions in DMN and MDN have

imilar representational formats relating to prior experience, and oc-

upy adjacent positions on the principal gradient. 

One limitation of the current study was that different metrics

strength of association and WM load) were used to manipulate diffi-

ulty across the semantic and WM tasks, and it is difficult to directly

ompare these manipulations. The WM task was associated with faster

esponses, perhaps because word reading takes longer than letter identi-

cation, but RT reading times are not necessarily relevant to the activa-

ion of control networks. Similarly, the effect of strength of association

ad a larger effect on RT than WM load, although RT does not provide a

irect measure of cognitive control demands. Our task design focussed

n manipulating task demands in the verbal domain when semantic cog-

ition was or was not required, and the tasks were similar in their visual

resentation and in the button-press response. Future studies could ma-

ipulate semantic and non-semantic tasks in more directly comparable

ays, for example by presenting strong vs. weak distractors or more vs.

ess information to support a specific decision. A better match in diffi-

ulty across tasks might result in further cross-task classification results,

xtending beyond the regions identified here. 

In summary, univariate and multivariate pattern analyses provide

trong evidence that semantic control demands and WM load recruit

oth common and distinct processes in the multiple-demand and se-

antic control networks, respectively. Though semantic demand and

omain general demand are represented in both control networks, there

as only shared neural coding of difficulty across tasks in MDN, and dif-

erent neural coding of control demands in SCN. These findings indicate

CN and MDN can be dissociated according to the information that they

aintain about cognitive demands. 

eclaration of Competing Interest 

The authors declare no competing financial interests. 

redit authorship contribution statement 

Zhiyao Gao: Conceptualization, Methodology, Investigation, Data

uration, Formal analysis, Writing - original draft, Writing - re-

iew & editing. Li Zheng: Investigation, Writing – review & editing.

occo Chiou: Writing – review & editing. André Gouws: Investiga-

ion, Writing - review & editing. Katya Krieger-Redwood: Writing –

eview & editing. Xiuyi Wang: Investigating, Writing – review &

diting. Dominika Varga: Investigation, Writing - review & editing.



Z. Gao, L. Zheng, R. Chiou et al. NeuroImage xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: YNIMG [m5GeSdc; June 9, 2021;1:52 ] 

M  

S  

J  

&

D

 

t  

t  

f  

c  

l

A

 

I

S

 

t

R

A  

A  

 

B  

B  

B  

 

B  

B  

C  

C  

 

C  

 

C  

C  

 

D  

 

 

D  

D  

D

 

D  

 

 

,  

 

D  

D  

D  

E  

 

E  

E  

E  

F  

F  

F

G  

 

G  

 

G  

 

H  

H  

H  

 

H  

 

H  

J  

J  

J  

J  

J  

 

 

J  

J  

K  

 

L  

L  

L  

 

M  

M  

 

 

,  

 

M  

 

M  

M  

 

N  

 

 

N  

N  

 

atthew A. Lambon Ralph: Writing – review & editing. Jonathan

mallwood: Conceptualization, Writing - review & editing. Elizabeth

efferies: Conceptualization, Writing - original draft, Writing - review

 editing, Funding acquisition. 

ata and code availability statement 

Uncorrected statistical maps for the univariate parametric modula-

ion analyses are publicly available on NeuroVault in a collection with

he title of this article: ( https://neurovault.org/collections/8710/ ). Raw

MRI data is restricted in accordance with ERC and EU regulations. All

ode used in the production of this manuscript is publicly available on-

ine in the following repository: https://osf.io/bau5c/ . 

cknowledgments 

This work was sponsored by the European Research Council (Project

D: 771863 - FLEXSEM). 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2021.118230 . 

eferences 

ndersson J.L., Jenkinson M., Smith S. 2007. Non-linear registration, aka spatial normal-

isation. FMRIB technial report TR07JA2. 22. 

ssem, M. , Glasser, M.F. , Van Essen, D.C. , Duncan, J. , 2020. A domain-general cogni-

tive core defined in multimodally parcellated human cortex. Cerebral Cortex 30 (8),

4361–4380 . 

ates D., Mächler M., Bolker B., Walker S. 2014. Fitting linear mixed-effects models using

lme4. arXiv preprint arXiv:14065823. 

eckmann, C.F. , Jenkinson, M. , Smith, SM. , 2003. General multilevel linear modeling for

group analysis in FMRI. Neuroimage 20, 1052–1063 . 

handari, A. , Gagne, C. , Badre, D. , 2018. Just above chance: is it harder to decode infor-

mation from prefrontal cortex hemodynamic activity patterns? J. Cogn. Neurosci. 30,

1473–1498 . 

uckner R.L., Andrews-Hanna J.R., Schacter DL. 2008. The brain’s default network:

anatomy, function, and relevance to disease. 

uckner, R.L. , DiNicola, L.M. , 2019. The brain’s default network: updated anatomy, phys-

iology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 . 

hang, C.C. , Lin, C.J. , 2011. LIBSVM: A library for support vector machines. ACM Trans.

Intell. Syst. Technol. (TIST) 2, 1–27 . 

hiou, R. , Humphreys, G.F. , Jung, J. , Ralph, M.A.L. , 2018. Controlled semantic cogni-

tion relies upon dynamic and flexible interactions between the executive ‘semantic

control’and hub-and-spoke ‘semantic representation’systems. Cortex 103, 100–116 . 

ole, M.W. , Reynolds, J.R. , Power, J.D. , Repovs, G. , Anticevic, A. , Braver, TS. , 2013. Mul-

ti-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci. 16,

1348–1355 . 

outanche, MN. , 2013. Distinguishing multi-voxel patterns and mean activation: why,

how, and what does it tell us? Cogn. Affect. Behav. Neurosci. 13, 667–673 . 

rittenden, B.M. , Mitchell, D.J. , Duncan, J. , 2016. Task encoding across the multiple de-

mand cortex is consistent with a frontoparietal and cingulo-opercular dual networks

distinction. J. Neurosci. 36, 6147–6155 . 

avey, J. , Thompson, H.E. , Hallam, G. , Karapanagiotidis, T. , Murphy, C. , De Caso, I. ,

Krieger-Redwood, K. , Bernhardt, B.C. , Smallwood, J. , Jefferies, E. , 2016. Exploring

the role of the posterior middle temporal gyrus in semantic cognition: Integration of

anterior temporal lobe with executive processes. Neuroimage 137, 165–177 . 

avis, CJ. , 2005. N-watch: a program for deriving neighborhood size and other psycholin-

guistic statistics. Behav Res Methods 37, 65–70 . 

eichmann, R. , Gottfried, J.A. , Hutton, C. , Turner, R. , 2003. Optimized EPI for fMRI stud-

ies of the orbitofrontal cortex. Neuroimage 19, 430–441 . 

iachek, E. , Blank, I. , Siegelman, M. , Affourtit, J. , Fedorenko, E. , 2020. The domain–

general multiple demand (MD) network does not support core aspects of language

comprehension: a large-scale fMRI investigation. J. Neurosci. 40, 4536–4550 . 

ixon, M.L. , De La Vega, A. , Mills, C. , Andrews-Hanna, J. , Spreng, R.N. , Cole, M.W. ,

Christoff, K. , 2018. Heterogeneity within the frontoparietal control network and its

relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. 115,

E1598–E1607 . 

 1997. Support vector regression machines. In: Drucker, H., Burges, C.J., Kaufman, L.,

Smola, A.J., Vapnik, V. (Eds.), Advances in Neural Information Processing Systems.

The MIT Press, pp. 155–161 . 

uncan, J. , 2010. The multiple-demand (MD) system of the primate brain: mental pro-

grams for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 . 

uncan, J. , 2013. The structure of cognition: attentional episodes in mind and brain.

Neuron 80, 35–50 . 

uncan, J. , Owen, A.M. , 2000. Common regions of the human frontal lobe recruited by

diverse cognitive demands. Trends Neurosci. 23, 475–483 . 
11 
ckert, M.A. , Menon, V. , Walczak, A. , Ahlstrom, J. , Denslow, S. , Horwitz, A. , Dubno, JR. ,

2009. At the heart of the ventral attention system: the right anterior insula. Hum.

Brain Mapp. 30, 2530–2541 . 

lton, A. , Gao, W. , 2015. Task-positive functional connectivity of the default mode net-

work transcends task domain. J. Cogn. Neurosci. 27, 2369–2381 . 

mch, M. , von Bastian, C.C. , Koch, K. , 2019. Neural correlates of verbal working memory:

an fMRI meta-analysis. Front. Hum. Neurosci. 13 . 

rb, J. , Henry, M.J. , Eisner, F. , Obleser, J. , 2013. The brain dynamics of rapid perceptual

adaptation to adverse listening conditions. J. Neurosci. 33, 10688–10697 . 

edorenko, E. , 2014. The role of domain-general cognitive control in language compre-

hension. Front. Psychol. 5, 335 . 

edorenko, E. , Duncan, J. , Kanwisher, N. , 2013. Broad domain generality in focal regions

of frontal and parietal cortex. Proc. Natl. Acad. Sci. 110, 16616–16621 . 

edorenko, E. , Blank, IA. , 2020. Broca’s area is not a natural kind. Trends Cogn. Sci. . 

onzález-García, C. , Flounders, M.W. , Chang, R. , Baria, A.T. , He, BJ. , 2018. Content-spe-

cific activity in frontoparietal and default-mode networks during prior-guided visual

perception. eLife 7, e36068 . 

onzalez Alam, T. , Murphy, C. , Smallwood, J. , Jefferies, E. , 2018. Meaningful inhibition:

exploring the role of meaning and modality in response inhibition. Neuroimage 181,

108–119 . 

onzalez Alam, TRdJ , Karapanagiotidis, T. , Smallwood, J. , Jefferies, E. , 2019. Degrees of

lateralisation in semantic cognition: evidence from intrinsic connectivity. Neuroimage

202, 116089 . 

aynes, J.D. , 2015. A primer on pattern-based approaches to fMRI: principles, pitfalls,

and perspectives. Neuron 87, 257–270 . 

aynes, J.D. , Rees, G. , 2006. Decoding mental states from brain activity in humans. Nat.

Rev. Neurosci. 7, 523–534 . 

offman, P. , Jefferies, E. , Ralph, MAL. , 2010. Ventrolateral prefrontal cortex plays an

executive regulation role in comprehension of abstract words: convergent neuropsy-

chological and repetitive TMS evidence. J. Neurosci. 30, 15450–15456 . 

offman, P. , Binney, R.J. , Ralph, MAL. , 2015. Differing contributions of inferior prefrontal

and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex

63, 250–266 . 

untenburg, J.M. , Bazin, P.L. , Margulies, DS. , 2018. Large-scale gradients in human cor-

tical organization. Trends Cogn. Sci. 22, 21–31 . 

ackson RL. 2020. The neural correlates of semantic control revisited.

bioRxiv.2020.2007.2015.204990. 

ackson R.L., Rogers T.T., Lambon Ralph MA. 2019. Reverse-engineering the cortical ar-

chitecture for controlled semantic cognition. bioRxiv.860528. 

efferies, E. , 2013. The neural basis of semantic cognition: converging evidence from neu-

ropsychology, neuroimaging and TMS. Cortex 49, 611–625 . 

efferies, E. , Lambon Ralph, MA. , 2006. Semantic impairment in stroke aphasia versus

semantic dementia: a case-series comparison. Brain 129, 2132–2147 . 

efferies, E. , Thompson, H. , Cornelissen, P. , Smallwood, J. , 2020. The neurocognitive basis

of knowledge about object identity and events: dissociations reflect opposing effects

of semantic coherence and control. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190300 .

enkinson, M. , Smith, S. , 2001. A global optimisation method for robust affine registration

of brain images. Med. Image Anal. 5, 143–156 . 

imura, K. , Poldrack, RA. , 2012. Analyses of regional-average activation and multivoxel

pattern information tell complementary stories. Neuropsychologia 50, 544–552 . 

rieger-Redwood, K. , Teige, C. , Davey, J. , Hymers, M. , Jefferies, E. , 2015. Conceptual con-

trol across modalities: graded specialisation for pictures and words in inferior frontal

and posterior temporal cortex. Neuropsychologia 76, 92–107 . 

ambon Ralph, M.A. , 2014. Neurocognitive insights on conceptual knowledge and its

breakdown. Philos. Trans. R. Soc. B Biol. Sci. 369, 20120392 . 

ambon Ralph, M.A.L. , Jefferies, E. , Patterson, K. , Rogers, T.T. , 2017. The neural and

computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42 . 

anzoni, L. , Ravasio, D. , Thompson, H. , Vatansever, D. , Margulies, D. , Smallwood, J. ,

Jefferies, E. , 2020. The role of default mode network in semantic cue integration.

Neuroimage 219, 117019 . 

ahon, B.Z. , Caramazza, A. , 2010. Judging semantic similarity: an event-related fMRI

study with auditory word stimuli. Neuroscience 169, 279–286 . 

argulies, D.S. , Ghosh, S.S. , Goulas, A. , Falkiewicz, M. , Huntenburg, J.M. , Langs, G. , Bez-

gin, G. , Eickhoff, S.B. , Castellanos, F.X. , Petrides, M. , Jefferies, E. , Smallwood, J. ,

2016. Situating the default-mode network along a principal gradient of macroscale

cortical organization. Proc. Natl. Acad. Sci. 113, 12574–12579 . 

 2013. Distributed representations of words and phrases and their compositionality. In:

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J. (Eds.), Advances in Neural

Information Processing Systems. The MIT Press, pp. 3111–3119 . 

isaki, M. , Kim, Y. , Bandettini, P.A. , Kriegeskorte, N. , 2010. Comparison of multivariate

classifiers and response normalizations for pattern-information fMRI. Neuroimage 53,

103–118 . 

umford, J.A. , Poldrack, RA. , 2007. Modeling group fMRI data. Social Cogn. Affect. Neu-

rosci. 2, 251–257 . 

urphy, K. , Bodurka, J. , Bandettini, PA. , 2007. How long to scan? The relationship be-

tween fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage

34, 565–574 . 

oonan, K.A. , Jefferies, E. , Visser, M. , Lambon Ralph, M.A. , 2013. Going beyond inferior

prefrontal involvement in semantic control: evidence for the additional contribution

of dorsal angular gyrus and posterior middle temporal cortex. J. Cogn. Neurosci. 25,

1824–1850 . 

orman, K.A. , Polyn, S.M. , Detre, G.J. , Haxby, JV. , 2006. Beyond mind-reading: multi-

-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 . 

ozari, N. , Thompson-Schill, SL. , 2016. Left ventrolateral prefrontal cortex in process-

ing of words and sentences. In: Neurobiology of language Elsevier. Academic Press,

pp. 569–584 . 

https://www.neurovault.org/collections/8710/
https://www.osf.io/bau5c/
https://doi.org/10.1016/j.neuroimage.2021.118230
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0061


Z. Gao, L. Zheng, R. Chiou et al. NeuroImage xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: YNIMG [m5GeSdc; June 9, 2021;1:52 ] 

P  

 

P

 

P  

 

P  

 

P  

R  

R  

S  

T  

V  

 

V  

W  

 

W  

 

W  

W  

 

W  

W  

W  

 

W  

W  

 

Z  

 

 

ereira, F. , Gershman, S. , Ritter, S. , Botvinick, M. , 2016. A comparative evaluation of of-

f-the-shelf distributed semantic representations for modelling behavioural data. Cogn.

Neuropsychol. 33, 175–190 . 

iai, V. , Roelofs, A. , Acheson, D.J. , Takashima, A. , 2013. Attention for speaking: domain–

general control from the anterior cingulate cortex in spoken word production. Front.

Hum. Neurosci. 7 . 

rice, A.R. , Bonner, M.F. , Peelle, J.E. , Grossman, M. , 2015. Converging evidence for the

neuroanatomic basis of combinatorial semantics in the angular gyrus. J. Neurosci. 35,

3276–3284 . 

rice, A.R. , Peelle, J.E. , Bonner, M.F. , Grossman, M. , Hamilton, RH. , 2016. Causal evi-

dence for a mechanism of semantic integration in the angular gyrus as revealed by

high-definition transcranial direct current stimulation. J. Neurosci. 36, 3829–3838 . 

ylkkänen, L. , 2019. The neural basis of combinatory syntax and semantics. Science 366,

62–66 . 

aichle, ME. , 2015. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 .

aichle, M.E. , MacLeod, A.M. , Snyder, A.Z. , Powers, W.J. , Gusnard, D.A. , Shulman, GL. ,

2001. A default mode of brain function. Proc. Natl. Acad. Sci. 98, 676–682 . 

triem-Amit, E. , Wang, X. , Bi, Y. , Caramazza, A. , 2018. Neural representation of visual

concepts in people born blind. Nat. Commun. 9, 5250 . 

ong, F. , Pratte, MS. , 2012. Decoding patterns of human brain activity. Annu. Rev. Psy-

chol. 63, 483–509 . 

atansever, D. , Menon, D.K. , Manktelow, A.E. , Sahakian, B.J. , Stamatakis, EA. , 2015. De-

fault mode dynamics for global functional integration. J. Neurosci. 35, 15254–15262 .

atansever, D. , Menon, D.K. , Stamatakis, EA. , 2017. Default mode contributions to auto-

mated information processing. Proc. Natl. Acad. Sci. 114, 12821–12826 . 

alther, Alexander , Nili, Hamed , Ejaz, Naveed , Alink, Arjen , Kriegeskorte, Nikolaus ,

Diedrichsen, Jörn , 2016. Reliability of dissimilarity measures for multi-voxel pattern

analysis. Neuroimage 137, 188–200 . 
12 
ang, X. , Margulies, D.S. , Smallwood, J. , Jefferies, E. , 2020a. A gradient from long-term

memory to novel cognition: transitions through default mode and executive cortex.

Neuroimage 220, 117074 . 

ang X., Gao Z., Smallwood J., Jefferies E. 2020. Both default and multiple-demand re-

gions represent semantic goal information. bioRxiv.2020.2007.2009.196048. 

ard, E.J. , Chun, M.M. , Kuhl, BA. , 2013. Repetition suppression and multi-voxel pattern

similarity differentially track implicit and explicit visual memory. J. Neurosci. 33,

14749–14757 . 

en, T. , Duncan, J. , Mitchell, D.J. , 2020. Hierarchical Representation of multistep tasks

in multiple-demand and default mode networks. J. Neurosci. 40, 7724–7738 . 

immer, E.G. , Büchel, C. , 2019. Learning of distant state predictions by the orbitofrontal

cortex in humans. Nat. Commun. 10, 2554 . 

oolgar, A. , Jackson, J. , Duncan, J. , 2016. Coding of visual, auditory, rule, and response

information in the brain: 10 years of multivoxel pattern analysis. J. Cogn. Neurosci.

28, 1433–1454 . 

oolrich, M. , 2008. Robust group analysis using outlier inference. Neuroimage 41,

286–301 . 

oolrich, M.W. , Behrens, T.E. , Beckmann, C.F. , Jenkinson, M. , Smith, SM. , 2004. Multi-

level linear modelling for FMRI group analysis using Bayesian inference. Neuroimage

21, 1732–1747 . 

hang M., Wang X., Varga D., Krieger-Redwood K., Margulies D.S., Smallwood J., Jef-

feries E. 2020. Distinct default mode network subsystems show similarities and dif-

ferences in the effect of task focus across reading and autobiographical memory.

bioRxiv.2020.2010.2003.324947. 

http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/optTOeoVL5orb
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0077
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0079
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00507-3/sbref0080

	Distinct and common neural coding of semantic and non-semantic control demands
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Design
	2.3 Semantic association task design
	2.4 Semantic stimuli
	2.5 Verbal working memory task
	2.6 Mixed-effects modelling of behavioural data
	2.7 Neuroimaging data acquisition
	2.8 fMRI data pre-processing analysis
	2.9 Univariate parametric modulation analysis
	2.10 Multivoxel pattern analysis
	2.10.1 Single-trial response estimation

	2.11 Network selection and parcellation
	2.12 Regions of interest definition
	2.13 Support vector regression analysis

	3 Results
	3.1 Behavioural results
	3.2 fMRI results
	3.2.1 The parametric effect of word2vec on brain activation

	3.3 The parametric effect of working memory load on brain activation and the comparison with semantic control
	3.4 Identifying the neural coding of semantic and working memory demand using a searchlight approach
	3.5 Neural coding of semantic and working memory demand in large-scale brain networks

	4 Discussion
	Declaration of Competing Interest
	Credit authorship contribution statement
	Data and code availability statement
	Acknowledgments
	Supplementary materials
	References


